Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical photon–photon interaction mediated by a quantum emitter

A Publisher Correction to this article was published on 17 October 2022

This article has been updated

Abstract

Single photons role in the development of quantum science and technology. They can carry quantum information over extended distances to act as the backbone of a future quantum internet1 and can be manipulated in advanced photonic circuits, enabling scalable photonic quantum computing2,3. However, more sophisticated devices and protocols need access to multi-photon states with particular forms of entanglement. Efficient light–matter interfaces offer a route to reliably generating these entangled resource states4,5. Here we utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide to realize a quantum nonlinear interaction between single-photon wavepackets. We demonstrate the control of a photon using a second photon mediated by the quantum emitter. The dynamical response of the two-photon interaction is experimentally unravelled and reveals quantum correlations controlled by the pulse duration. Further development of this platform work, which constitutes a new research frontier in quantum optics6, will enable the tailoring of complex photonic quantum resource states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observation of dynamical photon–photon interaction.
Fig. 2: Temporal quantum correlations due to photon–photon dynamical interaction in the transmission channel.
Fig. 3: Unravelling the physical processes behind the quantum dynamics.

Similar content being viewed by others

Data availability

The complete dataset of time correlation measurements for different pulse lengths in all of the three propagation directions is plotted in Supplementary Figs. 1 and 2. The corresponding raw data files as well as futher data that support the findings of this work are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used for data analysis and simulated results is available from the corresponding authors upon reasonable request.

Change history

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    ADS  Google Scholar 

  2. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273 (2020).

    ADS  Google Scholar 

  3. Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology.Nat. Nanotechnol. 16, 1308 (2021).

    ADS  Google Scholar 

  4. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    ADS  Google Scholar 

  5. Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics - photon by photon. Nat. Photonics 8, 685 (2014).

    ADS  Google Scholar 

  6. Chang, D. E., Douglas, J. S., Gonz lez-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    ADS  MathSciNet  Google Scholar 

  7. Haroche, S. and Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006); https://doi.org/10.1093/acprof:oso/9780198509141.001.0001

  8. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977).

    ADS  Google Scholar 

  9. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    ADS  Google Scholar 

  10. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    ADS  Google Scholar 

  11. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237 (2014).

    ADS  Google Scholar 

  12. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963).

    Google Scholar 

  13. Englund, D. et al. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012).

    ADS  Google Scholar 

  14. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57 (2018).

    ADS  Google Scholar 

  15. Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photonics 8, 965 (2014).

    ADS  Google Scholar 

  16. Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622 (2019).

    ADS  Google Scholar 

  17. Pscherer, A. et al. Single-molecule vacuum Rabi splitting: four-wave mixing and optical switching at the single-photon level. Phys. Rev. Lett. 127, 133603 (2021).

    ADS  Google Scholar 

  18. Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

    ADS  Google Scholar 

  19. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007).

    Google Scholar 

  20. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    ADS  Google Scholar 

  21. Tey, M. K. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nat. Phys. 4, 924 (2008).

    Google Scholar 

  22. Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).

    ADS  Google Scholar 

  23. Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED.Nat. Phys. 4, 686 (2008).

    Google Scholar 

  24. Goban, A. et al. Atom-light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014).

    ADS  Google Scholar 

  25. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57 (2012).

    ADS  Google Scholar 

  26. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    ADS  MathSciNet  Google Scholar 

  27. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).

    ADS  Google Scholar 

  28. Barik, S. et al. A topological quantum optics interface. Science 359, 666 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  29. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  30. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Google Scholar 

  31. Kiilerich, A. H. & Mølmer, K. Input-output theory with quantum pulses. Phys. Rev. Lett. 123, 123604 (2019).

    ADS  Google Scholar 

  32. Fan, S., Kocabas, S.E. & Shen, J.-T. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A 82, 063821 (2010).

    ADS  Google Scholar 

  33. Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

    ADS  Google Scholar 

  34. Mahmoodian, S., Calajó, G., Chang, D. E., Hammerer, K. & Sørensen, A. S. Dynamics of many-body photon bound states in chiral waveguide QED. Phys. Rev. X 10, 031011 (2020).

    Google Scholar 

  35. Rephaeli, E. & Fan, S. Stimulated emission from a single excited atom in a waveguide. Phys. Rev. Lett. 108, 143602 (2012).

    ADS  Google Scholar 

  36. Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    ADS  Google Scholar 

  37. Le Jeannic, H. et al. Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide. Phys. Rev. Lett. 126, 023603 (2021).

    ADS  Google Scholar 

  38. Wu, F. Y., Ezekiel, S., Ducloy, M. & Mollow, B. R. Observation of amplification in a strongly driven two-level atomic system at optical frequencies. Phys. Rev. Lett. 38, 1077 (1977).

    ADS  Google Scholar 

  39. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847 (2016).

    ADS  Google Scholar 

  40. Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photonics 10, 450 (2016).

    ADS  Google Scholar 

  41. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692 (2019).

    ADS  Google Scholar 

  42. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441 (2017).

    ADS  Google Scholar 

  43. Ramos, T. & García-Ripoll, J. J. Multiphoton scattering tomography with coherent states. Phys. Rev. Lett. 119, 153601 (2017).

    ADS  Google Scholar 

  44. Liang, Q.-Y. et al. Observation of three-photon bound states in a quantum nonlinear medium. Science 359, 783 (2018).

    ADS  MathSciNet  Google Scholar 

  45. Zielnicki, K. et al. Joint spectral characterization of photon-pair sources. J. Mod. Opt. 65, 1141 (2018).

    ADS  MathSciNet  Google Scholar 

  46. Law, C. K., Walmsley, I. A. & Eberly, J. H. Continuous frequency entanglement: effective finite Hilbert space and entropy control. Phys. Rev. Lett. 84, 5304 (2000).

    ADS  Google Scholar 

  47. Kuzucu, O., Wong, F. N. C., Kurimura, S. & Tovstonog, S. Joint temporal density measurements for two-photon state characterization. Phys. Rev. Lett. 101, 153602 (2008).

    ADS  Google Scholar 

  48. Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012).

    ADS  Google Scholar 

  49. Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    ADS  Google Scholar 

  50. Kirsanske, G. et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306 (2017).

    ADS  Google Scholar 

  51. Thyrrestrup, H. et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide. Nano Lett. 18, 1801 (2018).

    ADS  Google Scholar 

  52. Fang, B., Cohen, O., Liscidini, M., Sipe, J. E. & Lorenz, V. O. Fast and highly resolved capture of the joint spectral density of photon pairs. Optica 1, 281 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Mølmer and R. Uppu for valuable discussions. We acknowledge funding from the Danish National Research Foundation (Center of Excellence ‘Hy-Q,’ grant number DNRF139). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 824140 (TOCHA, H2020-FETPROACT-01-2018). A.D.W. and A.L. gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG) (TRR 160 and LU2051/1-1) and the grants QR.X KIS6QK4001 and DFH/UFA CDFA-05-06. Work in Madrid is funded by the Spanish project PGC2018-094792-B-I00 (MCIU/AEI/FEDER, UE), CSIC Research Platform on Quantum Technologies PTI-001 and Proyecto Sinergico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM). T.R. further acknowledges support from the Juan de la Cierva fellowship IJC2019-040260-I.

Author information

Authors and Affiliations

Authors

Contributions

H.L.J., N.R., A.S.S. and P.L. designed the research and experiments. H.L.J., A.T. and J.C. carried out the experiments with participation from M.H.A. The theoretical model and simulations were developed by T.R. and J.J.G.-R. The data were analysed by H.L.J., A.T. and J.C. The semiconductor device was designed and fabricated by Y.W., L.M., S.S., A.D.W. and A.L. The paper was written by H.L.J., J.C. and P.L. with input from all authors.

Corresponding authors

Correspondence to Hanna Le Jeannic or Peter Lodahl.

Ethics declarations

Competing interests

P.L. is founder of the start-up company Sparrow Quantum.

Peer review

Peer review information

Nature Physics thanks Satoshi Iwamoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–8.

Source data

Source Data Fig. 1

Data used for plots in Fig. 1.

Source Data Fig. 2

Data used for plots in Fig. 2.

Source Data Fig. 3

Data used for plots in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Jeannic, H., Tiranov, A., Carolan, J. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022). https://doi.org/10.1038/s41567-022-01720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01720-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing