Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics

Abstract

Exploration of new dielectrics with a large capacitive coupling is an essential topic in modern electronics when conventional dielectrics suffer from the leakage issue near the breakdown limit. Here, to address this looming challenge, we demonstrate that rare-earth metal fluorides with extremely low ion migration barriers can generally exhibit an excellent capacitive coupling over 20 μF cm−2 (with an equivalent oxide thickness of ~0.15 nm and a large effective dielectric constant near 30) and great compatibility with scalable device manufacturing processes. Such a static dielectric capability of superionic fluorides is exemplified by MoS2 transistors exhibiting high on/off current ratios over 108, ultralow subthreshold swing of 65 mV dec−1 and ultralow leakage current density of ~10−6 A cm−2. Therefore, the fluoride-gated logic inverters can achieve notably higher static voltage gain values (surpassing ~167) compared with a conventional dielectric. Furthermore, the application of fluoride gating enables the demonstration of NAND, NOR, AND and OR logic circuits with low static energy consumption. In particular, the superconductor–insulator transition at the clean-limit Bi2Sr2CaCu2O8+δ can also be realized through fluoride gating. Our findings highlight fluoride dielectrics as a pioneering platform for advanced electronic applications and for tailoring emergent electronic states in condensed matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure, dielectric properties and F ion migration for a fluoride dielectric catalogue.
Fig. 2: Fluoride-gated MoS2 transistors.
Fig. 3: CMOS inverter based on n-type MoS2 and p-type WSe2 transistors.
Fig. 4: Linear logic gates based on fluoride-gated n-type MoS2 and p-type WSe2 transistors.
Fig. 5: Continuous tuning of the superconductor–insulator transition in Bi-2212 with fluoride gating.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Kingon, A. I., Maria, J.-P. & Streiffer, S. K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Alam, M. A., Smith, R. K., Weir, B. E. & Silverman, P. J. Uncorrelated breakdown of integrated circuits. Nature 420, 378 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, X. et al. Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article  CAS  Google Scholar 

  7. Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 534, 185–189 (2016).

    Article  Google Scholar 

  9. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, H. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, C.-L. et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett. 18, 2387–2392 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y.-C. et al. A brilliant cryogenic magnetic coolant: magnetic and magnetocaloric study of ferromagnetically coupled GdF3. J. Mater. Chem. C 3, 12206–12211 (2015).

    Article  CAS  Google Scholar 

  16. Motohashi, K., Nakamura, T., Kimura, Y., Uchimoto, Y. & Amezawa, K. Influence of microstructures on conductivity in tysonite-type fluoride ion conductors. Solid State Ion. 338, 113–120 (2019).

    Article  CAS  Google Scholar 

  17. Mattsson, S. & Paulus, B. Density functional theory calculations of structural, electronic, and magnetic properties of the 3d metal trifluorides MF3 (M = Ti-Ni) in the solid state. J. Comput. Chem. 40, 1190–1197 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Higuchi, T. & Kuwata-Gonokami, M. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing. Nat. Commun. 7, 10720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  CAS  Google Scholar 

  20. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  CAS  Google Scholar 

  21. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Vexler, M. I., Illarionov, Y. Y., Suturin, S. M., Fedorov, V. V. & Sokolov, N. S. Tunneling of electrons with conservation of the transverse wave vector in the Au/CaF2/Si(111) system. Phys. Solid State 52, 2357–2363 (2010).

    Article  CAS  Google Scholar 

  23. Iwai, H. et al. Advanced gate dielectric materials for sub-100 nm CMOS. Dig. Int. Electron Devices Meeting 625–628 (2002).

  24. Wang, X. et al. Improved integration of ultra-thin high-κ dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110, 053110 (2017).

    Article  Google Scholar 

  25. Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Zou, X. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 26, 6255–6261 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kuhn, A., Duppel, V. & Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013).

    Article  CAS  Google Scholar 

  29. Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Whiteley, J. M., Woo, J. H., Hu, E., Nam, K.-W. & Lee, S.-H. Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    Article  Google Scholar 

  31. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  32. Lin, Z., Liu, Z., Dudney, N. J. & Liang, C. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7, 2829–2833 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Murayama, M., Sonoyama, N., Yamada, A. & Kanno, R. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system. Solid State Ion. 170, 173–180 (2004).

    Article  CAS  Google Scholar 

  34. Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

    Article  CAS  Google Scholar 

  35. Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).

    Article  CAS  Google Scholar 

  36. Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Tong, L. et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023).

    CAS  Google Scholar 

  38. Kang, W.-M., Cho, I.-T., Roh, J., Lee, C. & Lee, J.-H. High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping. Semicond. Sci. Technol. 31, 105001 (2016).

    Article  Google Scholar 

  39. Koenig, S. P. et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, T. et al. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 30, 1804470 (2018).

    Article  Google Scholar 

  41. Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wachter, S. et al. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lei, B. et al. Manipulating high-temperature superconductivity by oxygen doping in Bi2Sr2CaCu2O8+δ thin flakes. Natl Sci. Rev. 9, nwac089 (2022).

  44. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7–x films. Phys. Rev. Lett. 107, 027001 (2011).

    Article  PubMed  Google Scholar 

  45. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  46. Liao, M. et al. Superconductor–insulator transitions in exfoliated Bi2Sr2CaCu2O8+δ flakes. Nano Lett. 18, 5660–5665 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant nos. 92365203 (H.Y.) and 52072168 (H.Y.)) and the National Key R&D Program of China (grant no. 2021YFA1202901 (J.H.)). The work at Brookhaven National Laboratory was supported by grants from the US Department of Energy, Office of Basic Energy Sciences (grant no. DOE-sc0012704 (G.G.)). Y.C. and H.Y.H. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (grant no. DE-AC02-76SF00515). We would also like to thank Y. Shen and Z. Liu for their assistance on the electrical transport measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., Q.-K.X., Y.C. and H.Y.H. conceived and designed the experiments. K.M., Z.L., P.C. and Y.Z. performed the device fabrications. K.M. and P.C. performed the EIS measurements. K.M., F.Q., D.Z. and J.H. performed the electrical transport measurements. C.Q. performed the atomic force microscopy measurements. G.G. provided the high-quality crystals. J.L. and Y.D. performed the STEM characterization. X.M. and Y.Y. performed the theoretical calculations. K.M., Z.L. and F.Q. analysed the data. K.M., Z.L. and H.Y. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Yurong Yang, Qi-Kun Xue, Yi Cui or Hongtao Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Sections 1–15 and Tables 1–5.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, K., Li, Z., Chen, P. et al. Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01675-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing