Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways

Abstract

The efficacy of STING (stimulator of interferon genes) agonists is due to various factors, primarily inefficient intracellular delivery, low/lack of endogenous STING expression in many tumours, and a complex balance between tumour control and progression. Here we report a universal STING mimic (uniSTING) based on a polymeric architecture. UniSTING activates STING signalling in a range of mouse and human cell types, independent of endogenous STING expression, and selectively stimulates tumour control IRF3/IFN-I pathways, but not tumour progression NF-κB pathways. Intratumoural or systemic injection of uniSTING-mRNA via lipid nanoparticles (LNPs) results in potent antitumour efficacy across established and advanced metastatic tumour models, including triple-negative breast cancer, lung cancer, melanoma and orthotopic/metastatic liver malignancies. Furthermore, uniSTING displays an effective antitumour response superior to 2′3′-cGAMP and ADU-S100. By favouring IRF3/IFN-I activity over the proinflammatory NF-κB signalling pathway, uniSTING promotes dendritic cell maturation and antigen-specific CD8+ T-cell responses. Extracellular vesicles released from uniSTING-treated tumour cells further sensitize dendritic cells via exosome-containing miRNAs that reduced the immunosuppressive Wnt2b, and a combination of LNP-uniSTING-mRNA with α-Wnt2b antibodies synergistically inhibits tumour growth and prolongs animal survival. Collectively, these results demonstrate the LNP-mediated delivery of uniSTING-mRNA as a strategy to overcome the current STING therapeutic barriers, particularly for the treatment of multiple cancer types in which STING is downregulated or absent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LNP-uniSTING-mRNA induced constitutive STING activation and EV-mediated crosstalk between tumour cells and DCs.
Fig. 2: Characterization of tetramer-based uniSTING as a universal STING agonist independent of cGAMP or endogenous STING.
Fig. 3: Cytosolic delivery of uniSTING-mRNA based on LNPs intratumourally inhibits tumour growth.
Fig. 4: Systemic uniSTING treatment exerts potent antitumour effects on orthotopic/metastatic tumours.
Fig. 5: Exosomal miRNAs derived from uniSTING-treated tumour cells potentiate DC function by blocking Wnt2b signalling.
Fig. 6: α-Wnt2b antibody enhances in vivo antitumour activity of STING activation.

Similar content being viewed by others

Data availability

The MicroRNA Data Integration Portal (mirDIP) was used to identify gene targets for exosomal miRNAs and can be accessed at http://ophid.utoronto.ca/mirDIP. The gene set database Hallmarks (h.all.v6.1.symbols.gmt) from the Molecular Signatures Database (MSigDB) was used in the analysis. All raw sequencing data and associated processed data files that support the findings of this study have been deposited in the Gene Expression Omnibus under accession code GSE253724 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253724). Source data are available for Figs. 2d–g,i,j, 3b,d–q, 4b,d,f,g, 5a–g,i,j and 6b,c,e–h and Supplementary Figs. 1c, 2a, 6b–d, 8c,d, 9 and 13d–f in the associated source data file. Source data are provided with this paper.

References

  1. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, S. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 5, 455–466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato, K. et al. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 1–8 (2018).

    Article  Google Scholar 

  8. Pan, B.-S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 369, eaba6098 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Konno, H. et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37, 2037–2051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia, T., Konno, H. & Barber, G. N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76, 6747–6759 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Tse, S.-W. et al. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol. Ther. 29, 2227–2238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tu, X. et al. Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nat. Commun. 13, 6977 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shang, G., Zhang, C., Chen, Z. J., Bai, X.-c & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567, 389–393 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, B. et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 569, 718–722 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, C., Sharma, N., Kessler, P. M. & Sen, G. C. Interferon induction by STING requires its translocation to the late endosomes. Traffic 24, 576–586 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, C. et al. STING-mediated interferon induction by herpes simplex virus 1 requires the protein tyrosine kinase Syk. Mbio 12, e03228–03221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stetefeld, J. et al. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat. Struct. Biol. 7, 772–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, J., Dobbs, N., Yang, K. & Yan, N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barber, G. N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 35, 88–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira Mann, C. C. et al. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep. 27, 1165–1175. e1165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 1–9 (2017).

    CAS  Google Scholar 

  27. Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Investig. 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, J. et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 14, 388–397 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Akita, H. Development of an SS-cleavable pH-activated lipid-like material (ssPalm) as a nucleic acid delivery device. Biol. Pharm. Bull. 43, 1617–1625 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Augustine, C. et al. Blood parameters of wistar albino rats fed processed tropical sickle pod (Senna obtusifolia) leaf meal-based diets. Transl. Anim. Sci. 4, 778–782 (2020).

    Article  PubMed Central  Google Scholar 

  34. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, W. et al. cGAS-STING–mediated DNA sensing maintains CD8+ T cell stemness and promotes antitumor T cell therapy. Sci. Transl. Med. 12, eaay9013 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Torralba, D. et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9, 2658 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Ishii, H. et al. miR-130a and miR-145 reprogram Gr-1+ CD11b+ myeloid cells and inhibit tumor metastasis through improved host immunity. Nat. Commun. 9, 2611 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Yang, J. et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 33, 3014–3023 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Ji, Y., Hocker, J. D. & Gattinoni L. in Seminars in Immunology (eds Kroemer, G. & Mantovani, A.) 45–53 (Elsevier, 2016).

  42. Lee, S. Y. et al. Wnt/Snail signaling regulates cytochrome c oxidase and glucose metabolismregulation of mitochondria and metabolism by Wnt/Snail. Cancer Res. 72, 3607–3617 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Stemmer, V., De Craene, B., Berx, G. & Behrens, J. Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene 27, 5075–5080 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, X., Zhang, M., Xu, F. & Jiang, S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol. Cancer 19, 35 (2020).

    Article  Google Scholar 

  45. Tokar, T. et al. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 46, D360–D370 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Hashiba A. et al. The use of design of experiments with multiple responses to determine optimal formulations for in vivo hepatic mRNA delivery. J. Control. Release 327, 467–476 (2020).

  47. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by innovation grants (RX03202109 and RX03222104) from the Eshelman Institute for Innovation (to R.L.), a developmental grant (MCR0634222) from UCRF (to R.L.) and research grants from the NIH (R01EB032865 to R.L. and R35-CA232109 and R01-AI029564 to J.P.-Y.T.). E.M. was supported by T32-CA196589.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., S.L., J.P.-Y.T. and R.L. conceived and designed the research. R.L. designed the uniSTING. Y.W. and S.L. performed plasmid construction, protein expression, mRNA synthesis, LNP generation, and all the tissue culture and in vivo animal experiments. M.H. performed RNA-seq and GSEA analysis and participated in the design of EV-related experiments. Y.Y. performed raw data alignments and analysis from RNA-seq results. E.M., L.Z. and A.M.W. helped with the preparation of mRNA and LNPs. Y.W. and M.H. performed the statistical analysis. With input from J.P.-Y.T. and S.L., Y.W. and R.L. analysed all the data and wrote the manuscript.

Corresponding authors

Correspondence to Jenny P.-Y. Ting or Rihe Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hadi Valadi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Source Data for Supplementary Figures 1, 2, 6, 8, 9 and 13.

Source data

Source Data Fig. 1

Unprocessed western blots and/or gels.

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, S., Hu, M. et al. Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01624-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research