Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces

Abstract

The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The theoretical rationale is that the BCD can be generated at certain symmetry-mismatched van der Waals heterointerfaces even though each material has no BCD in its band structure. However, experimental confirmation of such a BCD induced via breaking of the interfacial symmetry remains elusive. Here we demonstrate a universal strategy for BCD generation and observe BCD-induced gate-tunable spin-polarized photocurrent at WSe2/SiP interfaces. Although the rotational symmetry of each material prohibits the generation of spin photocurrent under normal incidence of light, we surprisingly observe a direction-selective spin photocurrent at the WSe2/SiP heterointerface with a twist angle of 0°, whose amplitude is electrically tunable with the BCD magnitude. Our results highlight a BCD–spin–valley correlation and provide a universal approach for engineering the geometric features of twisted heterointerfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of spin photocurrent at the heterointerface.
Fig. 2: Geometric configuration of spin photocurrent generated from the heterointerface.
Fig. 3: Spin photocurrent at heterointerfaces with different symmetries.
Fig. 4: Microscopic origin of spin photocurrent at the WSe2/SiP heterointerface.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  2. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  Google Scholar 

  3. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  CAS  Google Scholar 

  4. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  CAS  Google Scholar 

  5. Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article  Google Scholar 

  6. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  CAS  Google Scholar 

  7. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar 

  8. Berry, M. V. Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990).

    Article  Google Scholar 

  9. Resta, R. Manifestations of Berry’s phase in molecules and in condensed matter. J. Phys. Condens. Matter 12, R107–R143 (2000).

    Article  CAS  Google Scholar 

  10. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  11. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  12. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  13. Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    Article  CAS  Google Scholar 

  14. Kim, J. et al. Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers. Nat. Commun. 10, 3965 (2019).

    Article  Google Scholar 

  15. Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Article  CAS  Google Scholar 

  16. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  Google Scholar 

  17. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  CAS  Google Scholar 

  18. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e150152 (2016).

    Article  Google Scholar 

  19. Cook, A. M., Fregoso, B. M., de Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    Article  CAS  Google Scholar 

  20. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  CAS  Google Scholar 

  21. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  CAS  Google Scholar 

  22. Li, C. et al. Controllable seeded flux growth and optioelectric properties of bulk o-SiP crystals. CrystEngComm 19, 6986–6991 (2017).

    Article  CAS  Google Scholar 

  23. Sar, H., Gao, J. & Yang, X. 2D layered SiP as anisotropic nonlinear optical material. Sci. Rep. 11, 6372 (2021).

    Article  CAS  Google Scholar 

  24. Zhao, S. et al. Low-symmetry and nontoxic 2D SiP with strong polarization-sensitivity and fast photodetection. Adv. Opt. Mater. 9, 2100198 (2021).

    Article  CAS  Google Scholar 

  25. Materials Explorer, SiP: mp-2798 (The Materials Project, 2020); https://doi.org/10.17188/1202120

  26. Mortazavi, B., Shahrokhi, M., Cuniberti, G. & Zhuang, X. Two-dimensional SiP, SiAs, GeP and GeAs as promising candidates for photocatalytic applications. Coatings 9, 522 (2019).

    Article  CAS  Google Scholar 

  27. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  28. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  29. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935–R983 (2003).

    Article  CAS  Google Scholar 

  30. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article  CAS  Google Scholar 

  31. Yuan, H. T. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851–857 (2014).

    Article  CAS  Google Scholar 

  32. Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article  CAS  Google Scholar 

  33. Eginligil, M. et al. Dichroic spin–valley photocurrent in monolayer molybdenum disulphide. Nat. Commun. 6, 7636 (2015).

    Article  Google Scholar 

  34. Huang, Y. Q., Song, Y. X., Wang, S. M., Buyanova, I. A. & Chen, W. M. Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator. Nat. Commun. 8, 15401 (2016).

    Article  Google Scholar 

  35. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  36. Quereda, J. et al. Symmetry regimes for circular photocurrents in monolayer MoSe2. Nat. Commun. 9, 3346 (2018).

    Article  Google Scholar 

  37. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  CAS  Google Scholar 

  38. Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  CAS  Google Scholar 

  39. Sun, X. et al. Topological insulator metamaterial with giant circular photogalvanic effect. Sci. Adv. 7, eabe5748 (2021).

    Article  CAS  Google Scholar 

  40. Song, T. et al. Spin photovoltaic effect in magnetic van der Waals heterostructures. Sci. Adv. 7, eabg8094 (2021).

    Article  CAS  Google Scholar 

  41. Beal, A., Knights, J. & Liang, W. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540–3551 (1972).

    Article  CAS  Google Scholar 

  42. Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014).

    Article  CAS  Google Scholar 

  43. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  Google Scholar 

  44. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  45. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  46. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Article  CAS  Google Scholar 

  47. Powalla, L. et al. Berry curvature-induced local spin polarisation in gated graphene/WTe2 heterostructures. Nat. Commun. 13, 3152 (2022).

    Article  CAS  Google Scholar 

  48. Fang, S. et al. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides. Phys. Rev. B 92, 205108 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the A3 Foresight Program—Emerging Materials Innovation. We acknowledge the National Natural Science Foundation of China (grant numbers 51861145201 (H.T.Y.), 52072168 (H.T.Y.), 21733001 (H.T.Y.) and 12204232 (F.Q.)), the Jiangsu Key Laboratory of Artificial Functional Materials (H.T.Y.), the National Key Research and Development Program of China (grant numbers 2018YFA0306200 (H.T.Y.) and 2021YFA1202901 (J.H.)), the Natural Science Foundation of Jiangsu Province (grant number BK20220758 (F.Q.)) and Kakenhi grant JP19H05602 (Y.I.), JP22H04584 (T.I.) and JP23H00088 (T.I.) from the Japan Society for the Promotion of Science (JSPS) and JST PRESTO (grant number JPMJPR19L1 (T.I.)), the Alfred P. Sloan Foundation (B.L.), the National Science Foundation through Princeton University’s Materials Research Science and Engineering Center DMR-2011750 (B.L.) and the National Science Foundation under award DMR-2141966 (B.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.D., F.Q. and P.C. contributed equally to this work. H.T.Y. and Y.I. conceived this project. S.D., Z.L., X.B. and P.C. fabricated the devices. S.D., F.Q., C.Q. and J.H. established the photocurrent measurement setup. S.D., X.Y., F.M. and F.Q. performed the photocurrent measurements. S.D., G.L. and X.X. performed the second harmonic generation measurements. B.L. performed the theoretical analysis of the moiré k · p model. S.D., F.Q., T.I. and J.Y. analysed the photocurrent data. S.D., F.Q., B.L. and H.T.Y. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Toshiya Ideue, Biao Lian or Hongtao Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Qiong Ma, Liang Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Supplementary Sections 1–16.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Qin, F., Chen, P. et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 18, 867–874 (2023). https://doi.org/10.1038/s41565-023-01417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01417-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing