Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous

Abstract

Black phosphorus has emerged as a unique optoelectronic material, exhibiting tunable and high device performance from mid-infrared to visible wavelengths. Understanding the photophysics of this system is of interest to further advance device technologies based on it. Here we report the thickness dependence of the photoluminescence quantum yield at room temperature in black phosphorus while measuring the various radiative and non-radiative recombination rates. As the thickness decreases from bulk to ~4 nm, a drop in the photoluminescence quantum yield is initially observed due to enhanced surface carrier recombination, followed by an unexpectedly sharp increase in photoluminescence quantum yield with further thickness scaling, with an average value of ~30% for monolayers. This trend arises from the free-carrier to excitonic transition in black phosphorus thin films, and differs from the behaviour of conventional semiconductors, where photoluminescence quantum yield monotonically deteriorates with decreasing thickness. Furthermore, we find that the surface carrier recombination velocity of black phosphorus is two orders of magnitude lower than the lowest value reported in the literature for any semiconductor with or without passivation; this is due to the presence of self-terminated surface bonds in black phosphorus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitonic to free-carrier transition in BP.
Fig. 2: Excitonic recombination in thin BP.
Fig. 3: Free-carrier recombination in BP.
Fig. 4: Comparison of SRV.
Fig. 5: Enhanced PL QY by optical cavity.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published Article. Source data are provided with this paper.

Code availability

All codes to analyse the band structures, densities of states and optical properties are available from the corresponding authors upon reasonable request.

References

  1. Kim, H. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 596, 232–237 (2021).

    Article  CAS  Google Scholar 

  2. Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    Article  CAS  Google Scholar 

  3. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Article  CAS  Google Scholar 

  4. Chen, X. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017).

    Article  Google Scholar 

  5. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  CAS  Google Scholar 

  6. Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  CAS  Google Scholar 

  7. Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015).

    Article  CAS  Google Scholar 

  8. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  9. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  10. Ge, S. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett. 15, 4650–4656 (2015).

    Article  CAS  Google Scholar 

  11. Bhaskar, P., Achtstein, A. W., Vermeulen, M. J. W. & Siebbeles, L. D. A. Radiatively dominated charge carrier recombination in black phosphorus. J. Phys. Chem. C 120, 13836–13842 (2016).

    Article  CAS  Google Scholar 

  12. Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T. & Bright, T. B. Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57, 249–252 (1986).

    Article  CAS  Google Scholar 

  13. Edmonds, M. T. et al. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557–14562 (2015).

    Article  CAS  Google Scholar 

  14. Zhou, Q., Chen, Q., Tong, Y. & Wang, J. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016).

    Article  CAS  Google Scholar 

  15. Luo, W. et al. Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 27, 434002 (2016).

    Article  Google Scholar 

  16. Ziletti, A. et al. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Phys. Rev. B 91, 085407 (2015).

  17. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  18. Chen, H., Fei, W., Zhou, J., Miao, C. & Guo, W. Layer identification of colorful black phosphorus. Small 13, 1602336 (2017).

  19. Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).

    Article  CAS  Google Scholar 

  20. Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  CAS  Google Scholar 

  22. Tian, R. et al. Observation of excitonic series in monolayer and few-layer black phosphorus. Phys. Rev. B 101, 235407 (2020).

  23. Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article  CAS  Google Scholar 

  24. Zhang, G. et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 4, eaap9977 (2018).

    Article  Google Scholar 

  25. Tran, V., Fei, R. & Yang, L. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015).

    Article  Google Scholar 

  26. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus. Nano Lett. 17, 4706–4712 (2017).

    Article  CAS  Google Scholar 

  27. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  28. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  Google Scholar 

  29. Uddin, S. Z., Rabani, E. & Javey, A. Universal inverse scaling of exciton–exciton annihilation coefficient with exciton lifetime. Nano Lett. 21, 424–429 (2021).

    Article  CAS  Google Scholar 

  30. Kim, H., Uddin, S. Z., Higashitarumizu, N., Rabani, E. & Javey, A. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science 373, 448–452 (2021).

    Article  CAS  Google Scholar 

  31. Kim, B. et al. Free trions with near-unity quantum yield in monolayer MoSe2. ACS Nano 16, 140–147 (2021).

    Article  Google Scholar 

  32. Uddin, S. Z., Higashitarumizu, N., Kim, H., Rahman, I. K. M. R. & Javey, A. Efficiency roll-off free electroluminescence from monolayer WSe2. Nano Lett. 22, 5316–5321 (2022).

    Article  CAS  Google Scholar 

  33. Uddin, S. Z., Higashitarumizu, N., Kim, H., Rabani, E. & Javey, A. Engineering exciton recombination pathways in bilayer WSe2 for bright luminescence. ACS Nano 16, 1339–1345 (2022).

    Article  CAS  Google Scholar 

  34. Surrente, A. et al. Excitons in atomically thin black phosphorus. Phys. Rev. B 93, 121405 (2016).

    Article  Google Scholar 

  35. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  36. Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89, 201408(R) (2014).

  37. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  Google Scholar 

  38. Wei, Y.-C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photon. 14, 570–577 (2020).

    Article  CAS  Google Scholar 

  39. Hall, R. N. in Semiconductor Devices: Pioneering Papers (ed. Sze, S. M.) 70 (World Scientific, 1991).

  40. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  41. Fitzgerald, D. J. & Grove, A. S. Surface recombination in semiconductors. Surf. Sci. 9, 347–369 (1968).

    Article  CAS  Google Scholar 

  42. McIntosh, K. R. & Black, L. E. On effective surface recombination parameters. J. Appl. Phys. 116, 014503 (2014).

    Article  Google Scholar 

  43. Dumke, W. P. Spontaneous radiative recombination in semiconductors. Phys. Rev. 105, 139–144 (1957).

    Article  CAS  Google Scholar 

  44. Beattie, A. R. & Landsberg, P. T. Auger effect in semiconductors. Proc. R. Soc. Lond. 249, 16–29 (1959).

    CAS  Google Scholar 

  45. Haug, A. Auger recombination in direct-gap semiconductors: band-structure effects. J. Phys. 16, 4159–4172 (1983).

    CAS  Google Scholar 

  46. Bemski, G. Recombination in semiconductors. Proc. IRE 46, 990–1004 (1958).

    Article  Google Scholar 

  47. Abakumov, V. N., Perel, V. I. & Yassievich, I. N. in Nonradiative Recombination in Semiconductors (eds Agranovich, V. M. & Maradudin, A. A.) xi (Elsevier, 1991).

  48. Aspnes, D. E. Recombination at semiconductor surfaces and interfaces. Surf. Sci. 132, 406–421 (1983).

    Article  CAS  Google Scholar 

  49. Aytac, Y. et al. Bandgap and temperature dependence of Auger recombination in InAs/InAsSb type-II superlattices. J. Appl. Phys. 119, 215705 (2016).

    Article  Google Scholar 

  50. Delaney, K. T., Rinke, P. & Van de Walle, C. G. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 94, 191109 (2009).

    Article  Google Scholar 

  51. Combescot, M. & Combescot, R. Auger recombination in direct-gap semiconductors: effect of anisotropy and warping. Phys. Rev. B 37, 8781–8790 (1988).

    Article  CAS  Google Scholar 

  52. Kurtz, S. R., Biefeld, R. M. & Dawson, L. R. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1–xSbx. Phys. Rev. B 51, 7310–7313 (1995).

  53. Chen, C. et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 19, 1488–1493 (2019).

    Article  CAS  Google Scholar 

  54. Zhang, X., Shen, J.-X. & Van de Walle, C. G. Anomalous Auger recombination in PbSe. Phys. Rev. Lett. 125, 037401 (2020).

    Article  CAS  Google Scholar 

  55. Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

  56. Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947).

    Article  Google Scholar 

  57. Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. 8, 473–487 (2000).

    Article  CAS  Google Scholar 

  58. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  59. Huang, X., Lindgren, E. & Chelikowsky, J. R. Surface passivation method for semiconductor nanostructures. Phys. Rev. B 71, 165328 (2005).

    Article  Google Scholar 

  60. Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015).

    Article  CAS  Google Scholar 

  61. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  62. Gupta, N. et al. Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 22, 1294–1301 (2022).

    Article  CAS  Google Scholar 

  63. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  64. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  65. Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article  CAS  Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  67. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (EMAT program KC1201). N.H. acknowledges support from the Postdoctoral Fellowships for Research Abroad of the Japan Society for the Promotion of Science. E.R. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05-CH11231 within the Fundamentals of Semiconductor Nanowire Program (KCPY23). The optical incoupling/outcoupling simulation performed in Australia was supported by the Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems (project no. CE200100010) and by the Discovery Projects Program (DP210103428). We thank E. Yablonovitch for his help with carrier recombination modelling and S. Balendhran, H. Kim and N. Gupta for their help with optical measurements and simulations.

Author information

Authors and Affiliations

Authors

Contributions

N.H., S.Z.U. and A.J. conceived the idea for the project and designed the experiments. N.H., S.Z.U., I.K.M.R.R. and V.W. prepared samples and performed optical measurements. N.H., S.Z.U. and A.J. analysed the data. S.Z.U. performed analytical modelling. D.W. and E.R. performed electronic band structure calculations. N.H., S.Z.U., N.S.A., V.W. and K.B.C. performed optical simulations. N.H., S.Z.U. and A.J. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Ali Javey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Table 1 and Discussion.

Source data

Source Data Fig. 1

Source data for the plot.

Source Data Fig. 2

Source data for the plot.

Source Data Fig. 3

Source data for the plot.

Source Data Fig. 4

Source data for the plot.

Source Data Fig. 5

Source data for the plot.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashitarumizu, N., Uddin, S.Z., Weinberg, D. et al. Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous. Nat. Nanotechnol. 18, 507–513 (2023). https://doi.org/10.1038/s41565-023-01335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01335-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing