Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-phase sample-averaged single-particle spectroscopy of quantum emitters with femtosecond resolution

Abstract

The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity. We employ this approach to study heterogeneous emitters in two-dimensional hexagonal boron nitride. From milliseconds to nanoseconds, the translational, shelving, rotational and antibunching features are disentangled in time, which quantifies the normalized two-photon emission quantum yield. Leveraging the femtosecond resolution of this technique, we visualize electron–phonon coupling and discover the acceleration of polaronic formation on multi-electron excitation. Corroborated with theory, this translates to the photon fidelity characterization of cascaded emission efficiency and decoherence time. Our work provides a framework for ultrafast spectroscopy in heterogeneous emitters, opening new avenues of extreme-scale characterization for quantum applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme and FCS measurements at μs–ms timescales.
Fig. 2: FCS measurements at ns–ms timescales at varying conditions.
Fig. 3: SA-SPPP setup and spectrally resolved photon correlation analysis.
Fig. 4: SA-SPPP measurements on hBN SQEs and polaron simulation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  CAS  Google Scholar 

  3. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  Google Scholar 

  4. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  CAS  Google Scholar 

  5. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spokoyny, B. et al. Effect of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride. J. Phys. Chem. Lett. 11, 1330–1335 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, X. et al. Creating quantum emitters in hexagonal boron nitride deterministically on chip-compatible substrates. Nano Lett. 21, 8182–8189 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Chejanovsky, N. et al. Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett. 16, 7037–7045 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler, J. et al. Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation. Nano Lett. 19, 2121–2127 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. et al. Scalable and deterministic fabrication of quantum emitter arrays from hexagonal boron nitride. Nano Lett. 21, 3626–3632 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Shotan, Z. et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics 3, 2490–2496 (2016).

    Article  CAS  Google Scholar 

  21. Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Schell, A. W., Svedendahl, M. & Quidant, R. Quantum emitters in hexagonal boron nitride have spectrally tunable quantum efficiency. Adv. Mater. 30, 1704237 (2018).

    Article  Google Scholar 

  23. Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  24. Shi, J. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, J., Chen, O., Strasfeld, D. B. & Bawendi, M. G. Biexciton quantum yield heterogeneities in single CdSe (CdS) core (shell) nanocrystals and its correlation to exciton blinking. Nano Lett. 12, 4477–4483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feldman, M. A. et al. Phonon-induced multicolor correlations in hBN single-photon emitters. Phys. Rev. B 99, 020101 (2019).

    Article  CAS  Google Scholar 

  29. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  Google Scholar 

  30. Moya, R., Norris, A. C., Kondo, T. & Schlau-Cohen, G. S. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy. Nat. Chem. 14, 153–159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Dijk, E. M. H. P. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).

    Article  PubMed  Google Scholar 

  32. Grosso, G. et al. Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics 7, 1410–1417 (2020).

    Article  CAS  Google Scholar 

  33. Beyler, A. P. et al. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation. Nano Lett. 14, 6792–6798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui, J., Beyler, A. P., Bischof, T. S., Wilson, M. W. B. & Bawendi, M. G. Deconstructing the photon stream from single nanocrystals: from binning to correlation. Chem. Soc. Rev. 43, 1287–1310 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Malý, P., Gruber, J. M., Cogdell, R. J., Mančal, T. & van Grondelle, R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl Acad. Sci. USA 113, 2934–2939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Preuss, J. A. et al. Resonant and phonon-assisted ultrafast coherent control of a single hBN color center. Optica 9, 522–531 (2022).

    Article  CAS  Google Scholar 

  37. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  CAS  Google Scholar 

  38. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

    Article  CAS  Google Scholar 

  40. Ronceray, N. et al. Liquid-activated quantum emission from pristine hexagonal boron nitride for nanofluidic sensing. Nat. Mater. 22, 1236–1242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kask, P., Piksarv, P., Pooga, M., Mets, U. & Lippmaa, E. Separation of the rotational contribution in fluorescence correlation experiments. Biophys. J. 55, 213–220 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koperski, M. et al. Towards practical applications of quantum emitters in boron nitride. Sci. Rep. 11, 15506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  Google Scholar 

  44. Maiti, S., Haupts, U. & Webb, W. W. Fluorescence correlation spectroscopy: diagonstics for sparse molecules. Proc. Natl Acad. Sci. USA 94, 11753–11757 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).

  46. Fisher, A. J., Hayes, W. & Wallace, D. S. Polarons and solitons. J. Phys. Condens. Matter 1, 5567 (1989).

    Article  CAS  Google Scholar 

  47. Brown, D. W., Lindenberg, K. & West, B. J. On the dynamics of polaron formation in a deformable medium. J. Chem. Phys. 84, 1574–1582 (1986).

    Article  CAS  Google Scholar 

  48. Brown, D. W., Lindenberg, K., West, B. J., Cina, J. A. & Silbey, R. Polaron formation in the acoustic chain. J. Chem. Phys. 87, 6700–6705 (1987).

    Article  CAS  Google Scholar 

  49. Takagahara, T. Theory of exciton dephasing in semiconductor quantum dots. Phys. Rev. B 60, 2638–2652 (1999).

    Article  CAS  Google Scholar 

  50. Wood, V. et al. Electroluminescence from nanoscale materials via field-driven ionization. Nano Lett. 11, 2927–2932 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Takeda, J. et al. Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes. Phys. Rev. B 62, 10083–10087 (2000).

    Article  CAS  Google Scholar 

  52. Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wee, T.-L. et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. J. Phys. Chem. A 111, 9379–9386 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Greener, J. D. G. et al. Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is primarily supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers. Y.S. acknowledges support from the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515 for the polaron simulations. F.P. and J.A.D. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences (award DE-SC0021984), and the Office of Naval Research under the Multi-University Research Initiative (MURI) program (award N00014-23-1-2567) for FCS characterization and modeling efforts. Work was performed in part at the Stanford Nanofabrication Facility supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure (award ECCS-1542152). W.S. and M.G.B. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award DE-SC0021650). This material is based on the work supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers. We also acknowledge helpful discussions with H. Utzat and W. Carpenter.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and A.M.L. conceived the study. J.S., Y.S. and F.P. conducted the experiment under the supervision of A.M.L., F.L. and J.A.D. F.P. and J.S. interpreted the FCS data under the guidance of W.E.M. Y.S. and J.S. performed the polaronic simulation under the guidance of A.M.L. W.S. provided the CdSe/CdS QDs under the supervision of M.G.B. C.S. prepared the diluted QD solution. C.S. and P.M. performed the transmission electron microscopy characterization. W.S., A.M. and A.M.-G. contributed to data interpretation. J.S., Y.S. and F.P. wrote the paper with crucial inputs from all authors.

Corresponding author

Correspondence to Aaron M. Lindenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Aleksandra Radenovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12 and Figs. 1–17.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Shen, Y., Pan, F. et al. Solution-phase sample-averaged single-particle spectroscopy of quantum emitters with femtosecond resolution. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01855-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing