Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon export from seaweed forests to deep ocean sinks

Abstract

The coastal ocean represents an important global carbon sink and is a focus for interventions to mitigate climate change and meet the Paris Agreement targets while supporting biodiversity and other ecosystem functions. However, the fate of the flux of carbon exported from seaweed forests—the world’s largest coastal vegetated ecosystem—is a key unknown in marine carbon budgets. Here we provide national and global estimates for seaweed-derived particulate carbon export below 200 m depth, which totalled 3–4% of the ocean carbon sink capacity. We characterized export using models of seaweed forest extent, production and decomposition, as well as shelf–open ocean water exchange. On average, 15% of seaweed production is estimated to be exported across the continental shelf, which equates to 56 TgC yr−1 (range: 10–170 TgC yr−1). Using modelled sequestration timescales below 200 m depth, we estimated that each year, 4–44 Tg seaweed-derived carbon could be sequestered for 100 years. Determining the full extent of seaweed carbon sequestration remains challenging, but critical to guide efforts to conserve seaweed forests, which are in decline globally. Our estimate does not include shelf burial and dissolved and refractory carbon pathways; still it highlights a relevant potential contribution of seaweed to natural carbon sinks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flux of seaweed carbon to deep ocean.
Fig. 2: National estimates of seaweed carbon export.
Fig. 3: Sequestration timescales for exported seaweed carbon.

Similar content being viewed by others

Data availability

Data for national and ecoregion area estimates, percentage export, carbon export, NPP, decomposition and other parameters are available in Supplementary Data 1. Additional information on uncertainties around parameters and assumptions are provided in Supplementary Information. Predictive layers and model outputs of CRT, percentage export data and POC export are available at figshare (https://doi.org/10.6084/m9.figshare.24116973) (ref. 77). Areal estimates for floating and sinking seaweed forest were modelled from species occurrence records51 and stacked distribution estimates32 that are openly available at figshare (https://doi.org/10.6084/m9.figshare.14496018.v4) (ref. 75). Benthic currents and bathymetric data are available from Bio-ORACLE76. Source data for net primary productivity models are openly available4, and the dataset is described in Scientific Data (https://doi.org/10.1038/s41597-022-01554-5). Source CRTs33 are archived at NOAA GFDL (ftp://data1.gfdl.noaa.gov/users/Xiao.Liu/CRT_simulation/GFDL-MOM6-SIS2/).

Code availability

Source code is available at figshare (https://doi.org/10.6084/m9.figshare.24116973)77.

References

  1. Boyd, P. et al. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    Article  CAS  Google Scholar 

  2. Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. https://doi.org/10.1038/s41561-022-00927-0 (2022)

  3. Duarte, C. M., Gattuso, J., Hancke, K., Gundersen, H. & Filbee-Dexter, K. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 31, 1422–1439 (2022).

    Article  Google Scholar 

  4. Pessarrodona, A. et al. Global seaweed productivity. Sci. Adv. 8, 2465 (2022).

    Article  Google Scholar 

  5. Watanabe, K. et al. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 17, 2425–2440 (2020).

    Article  CAS  Google Scholar 

  6. Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, e03221 (2021).

    Article  Google Scholar 

  7. Krumhansl, K. & Scheibling, R. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).

    Article  Google Scholar 

  8. Filbee-Dexter, K., Wernberg, T., Ramirez-Llodra, E., Norderhaug, K. M. & Pedersen, M. F. Movement of pulsed resource subsidies from shallow kelp forests to deep fjords. Oecologia 187, 291–304 (2018).

    Article  Google Scholar 

  9. Fram, J. P. et al. Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol. Oceanogr. 53, 1589–1603 (2008).

    Article  CAS  Google Scholar 

  10. Vetter, E. W. & Dayton, P. K. Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep Sea Res. 2 45, 25–54 (1998).

    Article  Google Scholar 

  11. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Article  CAS  Google Scholar 

  12. Queiros, A. M. et al. Connected macroalgal–sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. 89, e01366 (2019).

    Article  Google Scholar 

  13. Pessarrodona, A. et al. Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review. Biol. Rev. https://doi.org/10.1111/brv.12990 (2023).

  14. Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).

    Article  CAS  Google Scholar 

  15. Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol. 58, 347–363 (2022).

    Article  CAS  Google Scholar 

  16. Macreadie, P. I. et al. Operationalizing marketable blue carbon. One Earth 5, 485–492 (2022).

    Article  Google Scholar 

  17. Filbee-Dexter, K. & Wernberg, T. Substantial blue carbon in overlooked Australian kelp forests. Sci. Rep. 10, 12341 (2020).

    Article  CAS  Google Scholar 

  18. Ager, T. G. et al. Macroalgal habitats support a sustained flux of floating biomass but limited carbon export beyond a Greenland fjord. Sci. Total Environ. 872, 162224 (2023).

    Article  CAS  Google Scholar 

  19. Queirós, A. M. et al. Identifying and protecting macroalgae detritus sinks toward climate change mitigation. Ecol. Appl. https://doi.org/10.1002/EAP.2798 (2022).

    Article  Google Scholar 

  20. Vanderklift, M. A. et al. A guide to international climate mitigation policy and finance frameworks relevant to the protection and restoration of blue carbon ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.872064 (2022).

  21. Broch, O. J., Hancke, K. & Ellingsen, I. H. Dispersal and deposition of detritus from kelp cultivation. Front Mar. Sci. 9, 840531 (2022).

    Article  Google Scholar 

  22. Filbee-Dexter, K. et al. Kelp carbon sink potential decreases with warming due to accelerating decomposition. PLoS Biol. 20, e3001702 (2022).

    Article  CAS  Google Scholar 

  23. Harrold, C. & Lisin, S. Radio-tracking rafts of giant kelp: local production and regional transport. J. Exp. Mar. Biol. Ecol. 130, 237–251 (1989).

    Article  Google Scholar 

  24. Dai, M. et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends. Ann. Rev. Earth Planet. Sci. 50, 593–626 (2022).

    Article  CAS  Google Scholar 

  25. Hofmann, E. E. et al. Modeling the dynamics of continental shelf carbon. Ann. Rev. Mar. Sci. 3, 93–122 (2011).

    Article  Google Scholar 

  26. Pedersen, M., Filbee-Dexter, K., Frisk, N., Sárossy, Z. & Wernberg, T. Carbon sequestration potential increased by incomplete anaerobic decomposition of kelp detritus. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13613 (2021).

    Article  Google Scholar 

  27. Trevathan-Tackett, S. M. et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057 (2015).

    Article  Google Scholar 

  28. Queirós, A. M. et al. Connected macroalgal–sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. https://doi.org/10.1002/ecm.1366 (2019).

    Article  Google Scholar 

  29. Frigstad, H. et al. Blue Carbon—Climate Adaptation, CO2 Uptake and Sequestration of Carbon in Nordic Blue Forests (Nordic Council of Ministers, 2021); https://doi.org/10.6027/temanord2020-541

  30. Allen, S. E. & Durrieu de Madron, X. A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci. 5, 607–620 (2009).

    Article  Google Scholar 

  31. Siegel, D. A., DeVries, T., Doney, S. C. & Bell, T. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).

    Article  CAS  Google Scholar 

  32. Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 31, 636–648 (2022).

    Article  Google Scholar 

  33. Liu, X. et al. Simulating water residence time in the coastal ocean: a global perspective. Geophys. Res. Lett. 46, 13910–13919 (2019).

    Article  Google Scholar 

  34. Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, e2021GB007083 (2022).

    Article  CAS  Google Scholar 

  35. Friedlingstein, P. et al. Global carbon budget. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article  Google Scholar 

  36. De La Rocha, C. L. & Passow, U. in Treatise on Geochemistry 2nd edn, Vol. 8 (eds Holland, H. D. & Turekian, K. K.) 93–122 (Elsevier, 2014).

  37. Hernández-León, S. et al. Large deep-sea zooplankton biomass mirrors primary production in the global ocean. Nat. Commun. 11, 11 (2020).

    Article  Google Scholar 

  38. Cooley, S. et al. in IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al) Ch. 3 (Cambridge Univ. Press, 2022).

  39. Smith, S. V. Marine macrophytes as a global carbon sink. Science 211, 838–840 (1981).

    Article  CAS  Google Scholar 

  40. Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    Article  CAS  Google Scholar 

  41. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article  CAS  Google Scholar 

  42. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Article  Google Scholar 

  43. Buck-Wiese, H. et al. Fucoid brown algae inject fucoidan carbon into the ocean. Proc. Natl Acad. Sci. USA 120, 2210561119 (2023).

    Article  Google Scholar 

  44. Li, H. et al. Carbon sequestration in the form of recalcitrant dissolved organic carbon in a seaweed (kelp) farming environment. Environ. Sci. Technol. 56, 9112–9122 (2022).

    Article  CAS  Google Scholar 

  45. Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. https://doi.org/10.1111/jpy.13198 (2021).

  46. van der Mheen, M. et al. Substantial kelp detritus exported beyond the continental shelf by dense shelf water transport. Sci. Rep. 14, 839 (2024).

    Article  Google Scholar 

  47. Wernberg, T., Krumhansl, K. A., Filbee-Dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation 2nd edn, Vol. 3 (ed. Sheppard, C.) 57–78 (Academic Press, 2019).

  48. Filbee-Dexter, K. et al. Leveraging the blue economy to transform marine forest restoration. J. Phycol. 58, 198–207 (2022).

    Article  Google Scholar 

  49. Krause-Jensen, D. et al. Imprint of climate change on pan-Arctic marine vegetation. Front. Mar. Sci. 7, 617324 (2020).

    Article  Google Scholar 

  50. Amsler, C. D. et al. Strong correlations of sea ice cover with macroalgal cover along the Antarctic Peninsula: ramifications for present and future benthic communities. Elementa 11, 00020 (2023).

  51. Assis, J. et al. A fine-tuned global distribution dataset of marine forests. Sci. Data 7, 119 (2020).

  52. Fairhead, V. A. Ecophysiology and Production Ecology of the Kelp Ecklonia radiata (C.Agardh) J.Agardh, at West Island, South Australia. PhD thesis, Univ. Adelaide (2001).

  53. Wright, L. S., Pessarrodona, A. & Foggo, A. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. Glob. Change Biol. 28, 5514–5531 (2022).

    Article  CAS  Google Scholar 

  54. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article  Google Scholar 

  55. Griffies, S. M., Adcroft, A. & Hallberg, R. A primer on the vertical Lagrangian‐remap method in ocean models based on finite volume generalized vertical coordinates. J. Adv. Model. Earth Syst. 12, 10 (2020).

    Article  Google Scholar 

  56. Mahjabin, T., Pattiaratchi, C. & Hetzel, Y. Occurrence and seasonal variability of Dense Shelf Water Cascades along Australian continental shelves. Sci. Rep. 10, 9732 (2020).

    Article  CAS  Google Scholar 

  57. Smale, D. A., Pessarrodona, A., King, N. & Moore, P. J. Examining the production, export, and immediate fate of kelp detritus on open-coast subtidal reefs in the Northeast Atlantic. Limnol. Oceanogr. 67, S36–S49 (2022).

  58. Filbee-Dexter, K. & Scheibling, R. E. Spatial patterns and predictors of drift algal subsidy in deep subtidal environments. Estuaries Coasts 39, 1724–1734 (2016).

    Article  Google Scholar 

  59. Britton-Simmons, K. H. et al. Habitat and bathymetry influence the landscape‐scale distribution and abundance of drift macrophytes and associated invertebrates. Limnol. Oceanogr. 57, 176–184 (2012).

    Article  Google Scholar 

  60. Frontier, N., de Bettignies, F., Foggo, A. & Davoult, D. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: detached or broken, but not dead. Mar. Environ. Res. 166, 105277 (2021).

    Article  CAS  Google Scholar 

  61. Young, A. P. & Carilli, J. E. Global distribution of coastal cliffs. Earth Surf. Process. Landf. 44, 1309–1316 (2019).

    Article  Google Scholar 

  62. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A 34, 267–285 (1987).

    Article  CAS  Google Scholar 

  63. Lauderdale, J. M. & Cael, B. B. Impact of remineralization profile shape on the air–sea carbon balance. Geophys. Res. Lett. 48, e2020GL091746 (2021).

    Article  CAS  Google Scholar 

  64. Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29, 1044–1059 (2015).

    Article  CAS  Google Scholar 

  65. Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    Article  CAS  Google Scholar 

  66. Hobday, A. J. Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar. Ecol. Prog. Ser. 195, 101–116 (2000).

    Article  Google Scholar 

  67. Barnier, B., Penduff, T. & Langlais, C. in Operational Oceanography in the 21st Century (eds Schiller, A. & Brassington, G. B.) 239–262 (Springer, 2011).

  68. Olascoaga, M. J., Beron-Vera, F. J. & Miron, P. Observation and quantification of inertial effects on the drift of floating objects at the ocean surface. Phys. Fluids 32, 26601 (2020).

    Article  CAS  Google Scholar 

  69. Krumhansl, K. & Scheibling, R. Detrital production in Nova Scotian kelp beds: patterns and processes. Mar. Ecol. Prog. Ser. 421, 67–82 (2011).

    Article  Google Scholar 

  70. Pedersen, M. F. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia 192, 227–239 (2020).

    Article  Google Scholar 

  71. Wernberg, T. & Filbee-Dexter, K. Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus. Sci. Rep. 8, 17180 (2018).

    Article  Google Scholar 

  72. Carvajalino-Fernández, M. A., Sævik, P. N., Johnsen, I. A., Albretsen, J. & Keeley, N. B. Simulating particle organic matter dispersal beneath Atlantic salmon fish farms using different resuspension approaches. Mar. Pollut. Bull. 161, 111685 (2020).

    Article  Google Scholar 

  73. D’Asaro, E. A. et al. Ocean convergence and the dispersion of flotsam. Proc. Natl Acad. Sci. USA 115, 1162–1167 (2018).

    Article  Google Scholar 

  74. Holzer, M., DeVries, T. & de Lavergne, C. Diffusion controls the ventilation of a Pacific Shadow Zone above abyssal overturning. Nat. Commun. 12, 4348 (2021).

    Article  CAS  Google Scholar 

  75. Fragkopoulou, E. et al. Global diversity patterns of marine forests of brown microalgae. figshare https://doi.org/10.6084/m9.figshare.14496018.v4 (2021).

  76. Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article  Google Scholar 

  77. Filbee-Dexter, K. et al. Carbon export from seaweed forests to deep ocean sinks. figshare https://doi.org/10.6084/m9.figshare.24116973 (2024).

  78. R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

Download references

Acknowledgements

This work was supported by the Norwegian Blue Forest Network and EUROMARINE (FWS_07-2018). The project was funded by the Australian Research Council (DE190100692, FT230100214, DP220100650, LP220200004) to K.F.-D., T.W. and A.P., the Independent Research Fund Denmark (8021-00222 B, ‘CARMA’) to D.K.-J., and the Foundation for Science and Technology (UIDB/04326/2020, UIDP/04326/2020, LA/P/0101/2020) and Individual Call to Scientific Employment Stimulus (2022.00861.CEECIND/CP1729/CT0003) to J.A. Flume experiments used for benthic transport were conducted in collaboration with A. Pomeroy.

Author information

Authors and Affiliations

Authors

Contributions

K.F.-D., A.P., M.F.P., T.W., C.M.D., J.A., T.B., M.T.B., D.F.C., J.-P.G., H.G., K.H., K.A.K., T.K., J.J.M., P.J.M., A.M.Q., D.A.S., I.S.P., N.S. and D.K.-J. conceptualized this study over two workshops, one led by D.K.-J. and C.M.D. and one led by K.F.-D. K.F.-D. ran the simulations, analysed the data and wrote the original draft of the manuscript, with contributions from A.P., M.F.P., T.W. and D.K.-J. The seaweed forest area distributions were calculated by J. A., the data on percentage net primary production exported as detrital materials were compiled by A.P. and K.A.K., and the decomposition rates were compiled by M.F.P. A.P., M.F.P., T.W., C.M.D., J.A., T.B., M.T.B., D.F.C., J.-P.G., H.G., K.H., K.A.K., T.K., J.J.M., P.J.M., A.M.Q., D.A.S., I.S.P., N.S. and D.K.-J. provided inputs to the writing and comments on the final draft.

Corresponding author

Correspondence to Karen Filbee-Dexter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Alecia Bellgrove, Charlotte Laufkötter, Matthias Schmid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Seaweed carbon decomposition.

Range of decomposition rates (k) for brown seaweed genera. Dashed line shows global mean. Boxplots show the median and 25th and 75th percentiles and whiskers show 1.5 the inter-quartile range. Number of data points are shown in brackets. One outlier value for Nereocystis (k = 1.33) is not shown to aid visualization.

Extended Data Fig. 2 Flux of seaweed carbon to deep ocean.

Estimates of the total particulate organic carbon (POC) exported across the shelf and below 200-m depth in TgC y−1 for each ecoregion. Map shapefiles from Natural Earth.

Supplementary information

Supplementary Information

Sources of uncertainty and sensitivity analysis.

Supplementary Data 1

Data for national and ecoregion area estimates, percentage export, carbon export, NPP, decomposition and other parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filbee-Dexter, K., Pessarrodona, A., Pedersen, M.F. et al. Carbon export from seaweed forests to deep ocean sinks. Nat. Geosci. (2024). https://doi.org/10.1038/s41561-024-01449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-024-01449-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing