Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Oxygen dynamics in marine productive ecosystems at ecologically relevant scales

Abstract

The decline of dissolved oxygen in the oceans could be detrimental to marine life and biogeochemical cycles. However, predicting future oxygen availability with models that mainly focus on temporal and spatial large-scale mean values could lead to incorrect predictions. Marine ecosystems are strongly influenced by short temporal- and small spatial-scale oxygen fluctuations. Large-scale modelling neglects fluctuations, which include the pervasive occurrence of high oxygen supersaturation on a daily time scale in productive ecosystems such as coral reefs, seagrass meadows and mangrove forests and the spatial heterogeneity in oxygen availability at microclimatic scales. In these temporal and spatial micro-environments, oxygen fluctuations control biogeochemical cycles and alter community responses to, for example, heat stress and hypoxia. Robust projections on the impact of predicted ocean and coastal deoxygenation require a better understanding of the dynamics of the dissolved oxygen coupled with scaled-down projections of oxygen fluctuations at small relevant scales for marine biogeochemical processes and communities. Overall, the study of the true oxygen dynamics in marine productive habitats can provide crucial insights into the feedback mechanisms between climate change and marine ecosystems and can help to develop effective management and conservation strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causes of heterogeneity in oxygen availability in marine environments.
Fig. 2: Pervasiveness of oxygen periodicity and supersaturation in diverse productive coastal habitats.

Similar content being viewed by others

Data availability

Data from the Red Sea were retrieved from Giomi et al.10. Data from Venice Lagoon are available from the hydrobiological station Umberto D’Ancona at Chioggia, Italy (https://chioggia.biologia.unipd.it/en/the-database/parameters-of-lagoon/2017/ and https://chioggia.biologia.unipd.it/en/the-database/parameters-of-lagoon/2018/). Data from the Balearic Islands were retrieved from ref. 49. All of the data have been collated and are available as Supplementary Data 1.

References

  1. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  Google Scholar 

  2. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  Google Scholar 

  3. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    Article  Google Scholar 

  4. Laffoley, D. D. A. & Baxter, J. M. Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions (IUCN, 2019).

  5. Tomasetti, S. J. & Gobler, C. J. Dissolved oxygen and pH criteria leave fisheries at risk. Science 368, 372–373 (2020).

    Article  Google Scholar 

  6. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article  Google Scholar 

  7. Booth, J. et al. Diel oxygen fluctuation drives the thermal response and metabolic performance of coastal marine ectotherms. Proc. R. Soc. B Biol. Sci. 288, 20211141 (2021).

    Article  Google Scholar 

  8. Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Phil. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190454 (2020).

    Article  Google Scholar 

  9. Blewett, T. A. et al. Physiological and behavioural strategies of aquatic animals living in fluctuating environments. J. Exp. Biol. 225, jeb242503 (2022).

    Article  Google Scholar 

  10. Giomi, F. et al. Oxygen supersaturation protects coastal marine fauna from ocean warming. Sci. Adv. 5, eaax1814 (2019).

    Article  Google Scholar 

  11. Morash, A. J., Neufeld, C., MacCormack, T. J. & Currie, S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. J. Exp. Biol. 221, jeb164673 (2018).

    Article  Google Scholar 

  12. Legendre, L. in Ocean in the Earth System (eds Monaco, A. & Prouzet, P.) 145–188 (Wiley, 2014).

  13. Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).

    Article  Google Scholar 

  14. Falkowski, P. G. et al. Ocean deoxygenation: past, present, and future. Eos Trans. Am. Geophys. Union 92, 409–410 (2011).

    Article  Google Scholar 

  15. Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).

    Article  Google Scholar 

  16. Hull, V., Parrella, L. & Falcucci, M. Modelling dissolved oxygen dynamics in coastal lagoons. Ecol. Modell. 211, 468–480 (2008).

    Article  Google Scholar 

  17. Jenkins, W. J. & Goldman, J. C. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43, 465–491 (1985).

    Article  Google Scholar 

  18. Potter, K. A., Arthur Woods, H. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).

    Article  Google Scholar 

  19. Stanev, E. V. et al. Understanding the dynamics of the oxic–anoxic interface in the Black Sea. Geophys. Res. Lett. 45, 864–871 (2018).

    Article  Google Scholar 

  20. Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461 (1993).

    Article  Google Scholar 

  21. Zhan, P., Subramanian, A. C., Yao, F. & Hoteit, I. Eddies in the Red Sea: a statistical and dynamical study. J. Geophys. Res. Oceans 119, 3909–3925 (2014).

    Article  Google Scholar 

  22. Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J. & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnol. Oceanogr. 65, 314–324 (2020).

    Article  Google Scholar 

  23. Struebig, M. J. et al. Safeguarding imperiled biodiversity and evolutionary processes in the Wallacea Center of Endemism. Bioscience 72, 1118–1130 (2022).

    Google Scholar 

  24. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  Google Scholar 

  25. Craig, H. & Hayward, T. Oxygen supersaturation in the ocean: biological versus physical contributons. Science 735, 1983–1986 (1983).

    Google Scholar 

  26. Alvarenga, D. O., Rigonato, J., Branco, L. H. Z. & Fiore, M. F. Cyanobacteria in mangrove ecosystems. Biodivers. Conserv. 24, 799–817 (2015).

    Article  Google Scholar 

  27. Freeman, S. E., Freeman, L. A., Giorli, G. & Haas, A. F. Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. PLoS ONE 13, e0201766 (2018).

    Article  Google Scholar 

  28. Fusi, M., Daffonchio, D., Booth, J. & Giomi, F. Dissolved oxygen in heterogeneous environments dictates the metabolic rate and thermal sensitivity of a tropical aquatic crab. Front. Mar. Sci. 8, 767471 (2021).

    Article  Google Scholar 

  29. McArley, T. J., Morgenroth, D., Zena, L. A., Ekström, A. T. & Sandblom, E. Prevalence and mechanisms of environmental hyperoxia-induced thermal tolerance in fishes. Proc. R. Soc. B Biol. Sci. 289, 20220840 (2022).

    Article  Google Scholar 

  30. McArley, T. J., Morgenroth, D., Zena, L. A., Ekström, A. T. & Sandblom, E. Experimental hyperoxia (O2 supersaturation) reveals a gill diffusion limitation of maximum aerobic performance in fish. Biol. Lett. 18, 20220401 (2022).

    Article  Google Scholar 

  31. Morris, J. J., Rose, A. L. & Lu, Z. Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biol. 52, 102285 (2022).

    Article  Google Scholar 

  32. Limatola, N. et al. Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process. Mar. Environ. Res. 158, 104951 (2020).

    Article  Google Scholar 

  33. Chiarore, A. et al. Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments from Bagnoli-Coroglio Bay on different life stages of the sea urchin Paracentrotus lividus. Mar. Environ. Res. 159, 104967 (2020).

    Article  Google Scholar 

  34. Riser, S. C. & Johnson, K. S. Net production of oxygen in the subtropical ocean. Nature 451, 323–325 (2008).

    Article  Google Scholar 

  35. Kadlec, R. & Wallace, S. D. Treatment Wetlands (Taylor & Francis, 2009).

  36. Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011).

    Article  Google Scholar 

  37. Irby, I. D., Friedrichs, M. A. M., Da, F. & Hinson, K. E. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15, 2649–2668 (2018).

    Article  Google Scholar 

  38. Bui, L. T. & Tran, D. L. T. Assessing marine environmental carrying capacity in semi-enclosed coastal areas—models and related databases. Sci. Total Environ. 838, 156043 (2022).

    Article  Google Scholar 

  39. Oschlies, A., Koeve, W., Landolfi, A. & Kähler, P. Loss of fixed nitrogen causes net oxygen gain in a warmer future ocean. Nat. Commun. 10, 2805 (2019).

    Article  Google Scholar 

  40. Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J. Nitrogen in the Marine Environment (Elsevier, 2008).

  41. Garcias-Bonet, N. et al. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences 15, 7333–7346 (2018).

    Article  Google Scholar 

  42. Frame, C. H. & Casciotti, K. L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7, 2695–2709 (2010).

    Article  Google Scholar 

  43. Wasmund, K., Mußmann, M. & Loy, A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ. Microbiol. Rep. 9, 323–344 (2017).

    Article  Google Scholar 

  44. Benitez-Nelson, C. R., O’Neill, L., Kolowith, L. C., Pellechia, P. & Thunell, R. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 49, 1593–1604 (2004).

    Article  Google Scholar 

  45. Vargas, C. A. et al. Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates. Nat. Clim. Change 12, 200–207 (2022).

    Article  Google Scholar 

  46. Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    Article  Google Scholar 

  47. Wallace, R. B. & Gobler, C. J. The role of algal blooms and community respiration in controlling the temporal and spatial dynamics of hypoxia and acidification in eutrophic estuaries. Mar. Pollut. Bull. 172, 112908 (2021).

    Article  Google Scholar 

  48. Quiñones, R. A., Fuentes, M., Montes, R. M., Soto, D. & León-Muñoz, J. Environmental issues in Chilean salmon farming: a review. Rev. Aquac. 11, 375–402 (2019).

    Article  Google Scholar 

  49. Vaquer-Sunyer, R., Duarte, C. M., Jordà, G. & Ruiz-Halpern, S. Temperature dependence of oxygen dynamics and community metabolism in a shallow Mediterranean macroalgal meadow (Caulerpa prolifera). Estuaries Coasts 35, 1182–1192 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by King Abdullah University of Science and Technology through baseline funding to C.M.D. and D.D. and by a Competitive Research Grant (CRG-7-3739) to D.D. (The role of the bacterial symbiome at the gill–water (air) interface in the evolution towards terrestrialization (Microlanding); 1 April 2019 to 31 March 2022). We thank V. Saderne, R. Martinez, F. Lazaro, J. de la Cruz Martinez Ayala and P. Carrillo de Albornoz for assistance with the field work and data collection. We thank R. Marasco for critical revision of the manuscript. We are thankful to L. Sbaragli for critical revision of the abstract of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.G. and M.F. conceived of the study. F.G., M.F., A.B. and A.S. analysed and interpreted the results. F.G., A.B. and M.F. wrote the first draft of the manuscript. All authors contributed to and approved the final version of the manuscript.

Corresponding authors

Correspondence to Folco Giomi or Marco Fusi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Gil Jacinto, Lillian McCormick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor(s): Rebecca Neely and James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Dissolved oxygen and temperature data plotted in Figure 2. Published sources of data are indicated in Column E.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giomi, F., Barausse, A., Steckbauer, A. et al. Oxygen dynamics in marine productive ecosystems at ecologically relevant scales. Nat. Geosci. 16, 560–566 (2023). https://doi.org/10.1038/s41561-023-01217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01217-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing