Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphorus as an integral component of global marine biogeochemistry

Abstract

Phosphorus (P) is essential for life, but most of the global surface ocean is P depleted, which can limit marine productivity and affect ecosystem structure. Over recent decades, a wealth of new knowledge has revolutionized our understanding of the marine P cycle. With a revised residence time (~10–20 kyr) that is similar to nitrate and a growing awareness that P transformations are under tight and elaborate microbial control, the classic textbook version of a tectonically slow and biogeochemically simple marine P cycle has become outdated. P moves throughout the world’s oceans with a higher level of complexity than has ever been appreciated before, including a vast, yet poorly understood, P redox cycle. Here, we illustrate an oceanographically integral view of marine P by reviewing recent advances in the coupled cycles of P with carbon, nitrogen and metals in marine systems. Through this lens, P takes on a more dynamic and connected role in marine biogeochemistry than previously acknowledged, which points to unclear yet profound potential consequences for marine ecosystems, particularly under anthropogenic influence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The marine P cycle with an emphasis on the North Atlantic.
Fig. 2: Distribution of DOP concentrations and contribution to TDP over the global ocean.
Fig. 3: Metals and metalloenzymes coupled with P cycling.
Fig. 4: Reduced-P compounds and microbial transformations, including APO and DPO in natural environments.

Similar content being viewed by others

References

  1. Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R. & DeVries, T. The marine phosphorus cycle. Am. J. Sci. 282, 474–511 (1982).

    Article  Google Scholar 

  2. Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).

    Article  Google Scholar 

  3. Lin, S., Litaker, R. W. & Sunda, W. G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52, 10–36 (2016).

    Article  Google Scholar 

  4. Ruttenberg, K. C. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 499–558 (Elsevier, 2014).

  5. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  Google Scholar 

  6. Karl, D. M. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Annu. Rev. Mar. Sci. 6, 279–337 (2014).

    Article  Google Scholar 

  7. Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205–211 (2019).

    Article  Google Scholar 

  8. Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).

    Article  Google Scholar 

  9. Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014).

    Article  Google Scholar 

  10. Van Mooy, B. A. S. et al. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348, 783–785 (2015).

    Article  Google Scholar 

  11. Benitez-Nelson, C. R. & Buesseler, K. O. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398, 502–505 (1999).

    Article  Google Scholar 

  12. Trommer, G., Leynaert, A., Klein, C., Naegelen, A. & Beker, B. Phytoplankton phosphorus limitation in a North Atlantic coastal ecosystem not predicted by nutrient load. J. Plankton Res. 35, 1207–1219 (2013).

    Article  Google Scholar 

  13. Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).

    Article  Google Scholar 

  14. Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).

    Article  Google Scholar 

  15. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    Article  Google Scholar 

  16. Kamennaya, N. A., Geraki, K., Scanlan, D. J. & Zubkov, M. V. Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent. Nat. Commun. 11, 2642 (2020).

    Article  Google Scholar 

  17. Tanioka, T. & Matsumoto, K. A meta-analysis on environmental drivers of marine phytoplankton C:N:P. Biogeosciences 17, 2939–2954 (2020).

    Article  Google Scholar 

  18. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).

    Article  Google Scholar 

  19. Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).

    Article  Google Scholar 

  20. Sharoni, S. & Halevy, I. Nutrient ratios in marine particulate organic matter are predicted by the population structure of well-adapted phytoplankton. Sci. Adv. 6, eaaw9371 (2020).

    Article  Google Scholar 

  21. Diaz, J. et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320, 652–655 (2008).

    Article  Google Scholar 

  22. Tanioka, T. & Matsumoto, K. Buffering of ocean export production by flexible elemental stoichiometry of particulate organic matter. Glob. Biogeochem. Cycles 31, 1528–1542 (2017).

    Article  Google Scholar 

  23. Nausch, M. et al. Concentrations and uptake of dissolved organic phosphorus compounds in the Baltic Sea. Front. Mar. Sci. 5, 386 (2018).

    Article  Google Scholar 

  24. Schoffelen, N. J. et al. Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth. Sci. Rep. 8, 17182–17182 (2018).

    Article  Google Scholar 

  25. Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).

    Article  Google Scholar 

  26. Lønborg, C. & Álvarez‐Salgado, X. A. Recycling versus export of bioavailable dissolved organic matter in the coastal ocean and efficiency of the continental shelf pump. Glob. Biogeochem. Cycles 26, GB3018 (2012).

    Article  Google Scholar 

  27. Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29, 325–340 (2015).

    Article  Google Scholar 

  28. Letscher, R. T., Moore, J. K., Teng, Y.-C. & Primeau, F. Variable C:N:P stoichiometry of dissolved organic matter cycling in the Community Earth System Model. Biogeosciences 12, 209–221 (2015).

    Article  Google Scholar 

  29. Young, C. & Ingall, E. Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat. Geochem. 16, 563–574 (2010).

    Article  Google Scholar 

  30. Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat. Geosci. 7, 895–898 (2014).

    Article  Google Scholar 

  31. Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages between dynamic phytoplankton C:N:P and the ocean carbon cycle under climate change. Oceanography 33, 44–52 (2020).

    Article  Google Scholar 

  32. Gypens, N., Borges, A. V. & Ghyoot, C. How phosphorus limitation can control climate-active gas sources and sinks. J. Mar. Syst. 170, 42–49 (2017).

    Article  Google Scholar 

  33. Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).

    Article  Google Scholar 

  34. Reynolds, S., Mahaffey, C., Roussenov, V. & Williams, R. G. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic. Glob. Biogeochem. Cycles 28, 805–824 (2014).

    Article  Google Scholar 

  35. Repeta, D. J. et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat. Geosci. 9, 884–887 (2016).

    Article  Google Scholar 

  36. Sosa, O. A. et al. Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean. Limnol. Oceanogr. 65, 2443–2459 (2020).

    Article  Google Scholar 

  37. Karl, D. M. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).

    Article  Google Scholar 

  38. Pereira, N., Shilova, I. N. & Zehr, J. P. Use of the high-affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria). J. Phycol. 55, 752–761 (2019).

    Article  Google Scholar 

  39. Orchard, E. D., Ammerman, J. W., Lomas, M. W. & Dyhrman, S. T. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: the importance of phosphorus ester in the Sargasso Sea. Limnol. Oceanogr. 55, 1390–1399 (2010).

    Article  Google Scholar 

  40. Yamaguchi, T. et al. Basin-scale variations in labile dissolved phosphoric monoesters and diesters in the central North Pacific Ocean. J. Geophys. Res. Oceans 124, 3058–3072 (2019).

    Article  Google Scholar 

  41. Landolfi, A., Koeve, W., Dietze, H., Kaehler, P. & Oschlies, A. A new perspective on environmental controls of marine nitrogen fixation. Geophys. Res. Lett. 42, 4482–4489 (2015).

    Article  Google Scholar 

  42. Weber, T. & Deutsch, C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489, 419–422 (2012).

    Article  Google Scholar 

  43. Somes, C. J. & Oschlies, A. On the influence of ‘non-Redfield’ dissolved organic nutrient dynamics on the spatial distribution of N2 fixation and the size of the marine fixed nitrogen inventory. Glob. Biogeochem. Cycles 29, 973–993 (2015).

    Article  Google Scholar 

  44. Monteiro, F. M., & Follows, M. J. On nitrogen fixation and preferential remineralization of phosphorus. Geophys. Res. Lett. 39, L06607 (2012).

    Article  Google Scholar 

  45. Weber, T. S. & Deutsch, C. Ocean nutrient ratios governed by plankton biogeography. Nature 467, 550–554 (2010).

    Article  Google Scholar 

  46. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article  Google Scholar 

  47. Jickells, T. D. et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 31, 289–305 (2017).

    Google Scholar 

  48. Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6, 1072–1079 (2016).

    Article  Google Scholar 

  49. Kim, I.-N. et al. Increasing anthropogenic nitrogen in the North Pacific. Ocean Sci. 346, 1102–1106 (2014).

    Google Scholar 

  50. Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in phytoplankton community structure and productivity in the North Pacific subtropical gyre: the domain shift hypothesis. Deep-Sea Res. II 48, 1449–1470 (2001).

    Article  Google Scholar 

  51. Chien, C.-T. et al. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Glob. Biogeochem. Cycles 30, 716–734 (2016).

    Article  Google Scholar 

  52. Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).

    Article  Google Scholar 

  53. Letelier, R. M. et al. Climate-driven oscillation of phosphorus and iron limitation in the North Pacific subtropical gyre. Proc. Natl Acad. Sci. USA 116, 12720–12728 (2019).

    Article  Google Scholar 

  54. Rodriguez, F. et al. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J. Biol. Chem. 289, 30889–30899 (2014).

    Article  Google Scholar 

  55. Yong, S. C. et al. A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. Science 345, 1170–1173 (2014).

    Article  Google Scholar 

  56. Luo, H., Benner, R., Long, R. A. & Hu, J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl Acad. Sci. USA 106, 21219–21223 (2009).

    Article  Google Scholar 

  57. Lin, X., Guo, C., Li, L., Li, T. & Lin, S. Non-conventional metal ion cofactor requirement of dinoflagellate alkaline phosphatase and translational regulation by phosphorus limitation. Microorganisms 7, 232 (2019).

    Article  Google Scholar 

  58. Skouri-Panet, F. et al. In vitro and in silico evidence of phosphatase diversity in the biomineralizing bacterium Ramlibacter tataouinensis. Front. Microbiol. 8, 2592 (2018).

    Article  Google Scholar 

  59. Sharifian, S., Homaei, A., Kim, S.-K. & Satari, M. Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochem. 64, 103–115 (2018).

    Article  Google Scholar 

  60. Sebastian, M. & Ammerman, J. W. Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium Ruegeria pomeroyi DSS-3. Environ. Microbiol. Rep. 3, 535–542 (2011).

    Article  Google Scholar 

  61. Cox, A. D. & Saito, M. A. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Front. Microbiol. 4, 387 (2013).

    Google Scholar 

  62. Mahaffey, C., Reynolds, S., Davis, C. E. & Lohan, M. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments. Front. Mar. Sci. 1, 73 (2014).

    Article  Google Scholar 

  63. Browning, T. J. et al. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nat. Commun. 8, 15465 (2017).

    Article  Google Scholar 

  64. Mather, R. L. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 1, 439–443 (2008).

    Article  Google Scholar 

  65. Shelley, R. U. et al. A tale of two gyres: contrasting distributions of dissolved cobalt and iron in the Atlantic Ocean during an Atlantic meridional transect (AMT-19). Prog. Oceanogr. 158, 52–64 (2017).

    Article  Google Scholar 

  66. Rouco, M., Frischkorn, K. R., Haley, S. T., Alexander, H. & Dyhrman, S. T. Transcriptional patterns identify resource controls on the diazotroph Trichodesmium in the Atlantic and Pacific oceans. ISME J. 12, 1486–1495 (2018).

    Article  Google Scholar 

  67. Wojciechowski, C. L., Cardia, J. P. & Kantrowitz, E. R. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci. 11, 903–911 (2002).

    Article  Google Scholar 

  68. Jakuba, R. W., Moffett, J. W. & Dyhrman, S. T. Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Glob. Biogeochem. Cycles 22, GB4012 (2008).

    Article  Google Scholar 

  69. Saito, M. A. et al. The acceleration of dissolved cobalt’s ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean. Biogeosciences 14, 4637–4662 (2017).

    Article  Google Scholar 

  70. Baars, O., Abouchami, W., Galer, S. J. G., Boye, M. & Croot, P. L. Dissolved cadmium in the Southern Ocean: distribution, speciation, and relation to phosphate. Limnol. Oceanogr. 59, 385–399 (2014).

    Article  Google Scholar 

  71. Anderson, R. F. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annu. Rev. Mar. Sci. 12, 49–85 (2020).

    Article  Google Scholar 

  72. Fernández-Juárez, V., Bennasar-Figueras, A., Tovar-Sanchez, A. & Agawin, N. S. R. The role of iron in the P-acquisition mechanisms of the unicellular N2-fixing cyanobacteria Halothece sp., found in association with the Mediterranean seagrass Posidonia oceanica. Front. Microbiol. 10, 1903 (2019).

    Article  Google Scholar 

  73. Romano, S., Bondarev, V., Kölling, M., Dittmar, T. & Schulz-Vogt, H. N. Phosphate limitation triggers the dissolution of precipitated iron by the marine bacterium Pseudovibrio sp. FO-BEG1. Front. Microbiol. 8, 364 (2017).

    Article  Google Scholar 

  74. Defforey, D. & Paytan, A. Phosphorus cycling in marine sediments: advances and challenges. Chem. Geol. 477, 1–11 (2018).

    Article  Google Scholar 

  75. Ruttenberg, K. C. & Sulak, D. J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochim. Cosmochim. Acta 75, 4095–4112 (2011).

    Article  Google Scholar 

  76. Wan, B. Mineralogical and Geochemical Controls on Polyphosphate Transformation and Mineralization in Marine Sedimentary Environments. PhD thesis, Georgia Institute of Technology (2020).

  77. McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).

  78. Baldwin, D. S., Beattie, J. K., Coleman, L. M. & Jones, D. R. Phosphate ester hydrolysis facilitated by mineral phases. Environ. Sci. Technol. 29, 1706–1709 (1995).

    Article  Google Scholar 

  79. Goldhammer, T., Brüchert, V., Ferdelman, T. G. & Zabel, M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 3, 557–561 (2010).

    Article  Google Scholar 

  80. Huang, R., Wan, B., Hultz, M., Diaz, J. M. & Tang, Y. Phosphatase-mediated hydrolysis of linear polyphosphates. Environ. Sci. Technol. 52, 1183–1190 (2018).

    Article  Google Scholar 

  81. Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).

    Article  Google Scholar 

  82. Clark, L. L., Ingall, E. D. & Benner, R. Marine phosphorus is selectively remineralized. Nature 393, 426 (1998).

    Article  Google Scholar 

  83. Benitez-Nelson, C. R., O’Neill, L., Kolowith, L. C. & Pellechia, P. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 49, 1593–1604 (2004).

    Article  Google Scholar 

  84. Pasek, M. A., Sampson, J. M. & Atlas, Z. Redox chemistry in the phosphorus biogeochemical cycle. Proc. Natl Acad. Sci. USA 111, 15468–15473 (2014).

    Article  Google Scholar 

  85. Schink, B. & Friedrich, M. Phosphite oxidation by sulphate reduction. Nature 406, 37 (2000).

    Article  Google Scholar 

  86. Schink, B., Thiemann, V., Laue, H. & Friedrich, M. W. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch. Microbiol. 177, 381–391 (2002).

    Article  Google Scholar 

  87. Feingersch, R. et al. Potential for phosphite and phosphonate utilization by Prochlorococcus. ISME J. 6, 827–834 (2012).

    Article  Google Scholar 

  88. Martinez, A., Osburne, M. S., Sharma, A. K., DeLong, E. F. & Chisholm, S. W. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ. Microbiol. 14, 1363–1377 (2012).

    Article  Google Scholar 

  89. Polyviou, D., Hitchcock, A., Baylay, A. J., Moore, C. M. & Bibby, T. S. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ. Microbiol. Rep. 7, 824–830 (2015).

    Article  Google Scholar 

  90. Sosa, O. A., Repeta, D. J., DeLong, E. F., Ashkezari, M. D. & Karl, D. M. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. Environ. Microbiol. 21, 2402–2414 (2019).

    Article  Google Scholar 

  91. Whitney, L. P. & Lomas, M. W. Phosphonate utilization by eukaryotic phytoplankton. Limnol. Oceanogr. Lett. 4, 18–24 (2019).

    Article  Google Scholar 

  92. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006).

    Article  Google Scholar 

  93. McGrath, J. W., Chin, J. P. & Quinn, J. P. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat. Rev. Microbiol. 11, 412–419 (2013).

    Article  Google Scholar 

  94. Moffitt, S. E. et al. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography. PLoS ONE 10, e0115246 (2015).

    Article  Google Scholar 

  95. Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Article  Google Scholar 

  96. Obersteiner, M., Peñuelas, J., Ciais, P., van der Velde, M. & Janssens, I. A. The phosphorus trilemma. Nat. Geosci. 6, 897–898 (2013).

    Article  Google Scholar 

  97. Jarvie, H. P., Sharpley, A. N., Flaten, D. & Kleinman, P. J. A. Phosphorus mirabilis: illuminating the past and future of phosphorus stewardship. J. Environ. Qual. 48, 1127–1132 (2019).

    Article  Google Scholar 

  98. Karl, D. M. & Björkman, K. in Biochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. & Carlson, C.) 233–334 (Academic Press, 2015).

  99. Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2. Earth Syst. Sci. Data. 8, 325–340 (2016).

    Article  Google Scholar 

  100. Björkman, K. M., Thomson-Bulldis, A. L. & Karl, D. M. Phosphorus dynamics in the North Pacific subtropical gyre. Aquat. Microb. Ecol. 22, 185–198 (2000).

    Article  Google Scholar 

  101. Duhamel, S., Björkman, K. M., Repeta, D. J. & Karl, D. M. Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean. Prog. Oceanogr. 151, 261–274 (2017).

    Article  Google Scholar 

  102. McLaughlin, K., Sohm, J. A., Cutter, G. A., Lomas, M. W. & Paytan, A. Phosphorus cycling in the Sargasso Sea: investigation using the oxygen isotopic composition of phosphate, enzyme-labeled fluorescence, and turnover times. Glob. Biogeochem. Cycles 27, 375–387 (2013).

    Article  Google Scholar 

  103. Paytan, A., Kolodny, Y., Neori, A. & Luz, B. Rapid biologically mediated oxygen isotope exchange between water and phosphate. Glob. Biogeochem. Cycles 16, 1013 (2002).

    Article  Google Scholar 

  104. Ammerman, J. W. & Azam, F. Bacterial 5-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227, 1338–1340 (1985).

    Article  Google Scholar 

  105. Björkman, K. & Karl, D. M. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Mar. Ecol. Prog. Ser. 111, 265–273 (1994).

    Article  Google Scholar 

  106. White, A. E., Watkins-Brandt, K. S., Engle, M. A., Burkhardt, B. & Paytan, A. Characterization of the rate and temperature sensitivities of bacterial remineralization of dissolved organic phosphorus compounds by natural populations. Front. Microbiol. 3, 276 (2012).

    Article  Google Scholar 

  107. Martin, P., Dyhrman, S. T., Lomas, M. W., Poulton, N. J. & Van Mooy, B. A. S. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. Proc. Natl Acad. Sci. USA 111, 8089–8094 (2014).

    Article  Google Scholar 

  108. Martin, P. et al. Particulate polyphosphate and alkaline phosphatase activity across a latitudinal transect in the tropical Indian Ocean. Limnol. Oceanogr. 63, 1395–1406 (2018).

    Article  Google Scholar 

  109. Diaz, J. M. et al. Dissolved organic phosphorus utilization by phytoplankton reveals preferential degradation of polyphosphates over phosphomonoesters. Front. Mar. Sci. 5, 380 (2018).

    Article  Google Scholar 

  110. Vila-Costa, M. et al. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. Sci. Rep. 9, 233 (2019).

    Article  Google Scholar 

  111. Cembella, A. D., Antia, N. J. & Harrison, P. J. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit. Rev. Microbiol. 10, 317–391 (1984).

    Article  Google Scholar 

  112. Thomson, B. et al. Resolving the paradox: continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar. Chem. 214, 103671 (2019).

    Article  Google Scholar 

  113. Duhamel, S., Björkman, K. M., Van Wambeke, F., Moutin, T. & Karl, D. M. Characterization of alkaline phosphatase activity in the North and South Pacific subtropical gyres: implications for phosphorus cycling. Limnol. Oceanogr. 56, 1244–1254 (2011).

    Article  Google Scholar 

  114. Davis, C. E. & Mahaffey, C. Elevated alkaline phosphatase activity in a phosphate-replete environment: influence of sinking particles. Limnol. Oceanogr. 62, 2389–2403 (2017).

    Article  Google Scholar 

  115. Karl, D. M. in Manual of Environmental Microbiology 3rd edn (ed. Hurst, C. J. et al.) 523–539 (ASM, 2007).

  116. Labry, C. et al. High alkaline phosphatase activity in phosphate replete waters: the case of two macrotidal estuaries. Limnol. Oceanogr. 61, 1513–1529 (2016).

    Article  Google Scholar 

  117. Karl, D. M. & Tien, G. MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol. Oceanogr. 37, 105–116 (1992).

    Article  Google Scholar 

  118. Zhang, J. Z. & Chi, J. Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide. Environ. Sci. Technol. 36, 1048–1053 (2002).

    Article  Google Scholar 

  119. Rimmelin, P. & Moutin, T. Re-examination of the MAGIC method to determine low orthophosphate concentration in seawater. Anal. Chim. Acta 548, 174–182 (2005).

    Article  Google Scholar 

  120. Zimmer, L. A. & Cutter, G. A. High resolution determination of nanomolar concentrations of dissolved reactive phosphate in ocean surface waters using long path liquid waveguide capillary cells (LWCC) and spectrometric detection. Limnol. Oceanogr. Methods 10, 568–580 (2012).

    Article  Google Scholar 

  121. Foreman, R. K., Björkman, K. M., Carlson, C. A., Opalk, K. & Karl, D. M. Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol. Oceanogr. Methods 17, 277–291 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Letscher for providing access to published data and J. D. Diaz for assistance with online data retrieval from the Protein Data Bank. This work was supported by the National Science Foundation under grants 1737083, 2001212 (S.D.), 1736967, 1948042 (J.M.D.), 1737240 (S.D.), 1559124 and 2015310 (J.M.D.), as well as the Simons Foundation under grant 678537 (J.M.D.) and the Sloan Foundation (J.M.D.).

Author information

Authors and Affiliations

Authors

Contributions

This Review is the result of a team effort with all authors contributing to writing the overall manuscript. J.M.D. and S.D. are co-first authors, and J.C.A., K.D., V.S. and E.M.W. are co-contributing authors on this publication. S.D. and J.M.D. jointly and equally conceived, led, and supervised this paper. S.D. and J.M.D. co-led the introductory material, J.M.D. led the carbon section, J.C.A. led the nitrogen section, V.S. led the metals section, and K.D. and E.M.W. co-led the P redox section. S.D. led the boxes. K.D., V.S. and E.M.W. prepared figures and supplementary materials with input from all authors.

Corresponding authors

Correspondence to Solange Duhamel or Julia M. Diaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Adina Paytan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Clare Davis; Xujia Jiang.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of dissolved and particulate organic N:P and C:P ratios over the global ocean.

Modeled (colormap) DON to DOP (upper panel) and DOC to DOP ratios (lower panel) at 50 m depth and, observed (coloured circles) PON:POP and POC:POP ratios between the surface and 50 m depth (see Supplementary Information 2). The arrows by the colour scales indicate the Redfield ratios. Note the deviations from the C:N:P Redfield ratio of 106:16:1 (represented in white), with red and blue hues indicating values greater and lower than Redfield, respectively. The sparse particulate data are particularly due to the few POP measurements available.

Extended Data Fig. 2 Metal content of phosphoric ester hydrolases.

Percent of P-monoester (EC 3.1.3) and P-diester hydrolases (EC 3.1.4) that are metal-dependent, illustrating that APs can vary greatly in their metal content. While Mn and Fe occur more often in mono- compared to diesterases, Zn and Co occur more frequently in diesterases over monoesterases.

Supplementary information

Supplementary Information

Supplementary Information 1 and 2, and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duhamel, S., Diaz, J.M., Adams, J.C. et al. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 14, 359–368 (2021). https://doi.org/10.1038/s41561-021-00755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00755-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene