Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biogeographic response of marine plankton to Cenozoic environmental changes

Abstract

In palaeontological studies, groups with consistent ecological and morphological traits across a clade’s history (functional groups)1 afford different perspectives on biodiversity dynamics than do species and genera2,3, which are evolutionarily ephemeral. Here we analyse Triton, a global dataset of Cenozoic macroperforate planktonic foraminiferal occurrences4, to contextualize changes in latitudinal equitability gradients1, functional diversity, palaeolatitudinal specialization and community equitability. We identify: global morphological communities becoming less specialized preceding the richness increase after the Cretaceous–Palaeogene extinction; ecological specialization during the Early Eocene Climatic Optimum, suggesting inhibitive equatorial temperatures during the peak of the Cenozoic hothouse; increased specialization due to circulation changes across the Eocene–Oligocene transition, preceding the loss of morphological diversity; changes in morphological specialization and richness about 19 million years ago, coeval with pelagic shark extinctions5; delayed onset of changing functional group richness and specialization between hemispheres during the mid-Miocene plankton diversification. The detailed nature of the Triton dataset permits a unique spatiotemporal view of Cenozoic pelagic macroevolution, in which global biogeographic responses of functional communities and richness are decoupled during Cenozoic climate events. The global response of functional groups to similar abiotic selection pressures may depend on the background climatic state (greenhouse or icehouse) to which a group is adapted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Foraminiferal functional groups.
Fig. 2: Cenozoic climate and ecogroup metrics.
Fig. 3: Cenozoic climate and morphogroup metrics.

Similar content being viewed by others

Data availability

All data were sourced from the Triton dataset4 (https://doi.org/10.1038/s41597-021-00942-7).

Code availability

The code used to carry out the analyses is available in Zenodo at https://doi.org/10.5281/zenodo.7888565 (ref. 84).

References

  1. Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Late Cenozoic cooling restructured global marine plankton communities. Nature 614, 713–718 (2023).

  2. Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Origination of the modern-style diversity gradient 15 million years ago. Nature 614, 708–712 (2023).

  3. Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sibert, E. C. & Rubin, L. D. An early Miocene extinction in pelagic sharks. Science 372, 1105–1107 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B 371, 20150224 (2016).

    Article  Google Scholar 

  11. Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brodie, J. F. & Mannion, P. D. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol. Evol. 38, 15–23 (2023).

    Article  PubMed  Google Scholar 

  13. Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).

    Article  PubMed  Google Scholar 

  14. Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article  PubMed  Google Scholar 

  15. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Edie, S. M., Jablonski, D. & Valentine, J. W. Contrasting responses of functional diversity to major losses in taxonomic diversity. Proc. Natl Acad. Sci. USA 115, 732–737 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Pörtner, H.-O. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (IPCC, Cambridge Univ. Press, 2022).

  18. Jones, H. L., Lowery, C. M. & Bralower, T. J. Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater. Geology 47, 753–756 (2019).

    Article  CAS  ADS  Google Scholar 

  19. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Kirchner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).

    Article  PubMed  Google Scholar 

  22. Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article  CAS  ADS  Google Scholar 

  23. Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D. & Schmidt, D. N. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44, 287–290 (2016).

    Article  CAS  ADS  Google Scholar 

  24. Birch, H., Schmidt, D. N., Coxall, H. K., Kroon, D. & Ridgwell, A. Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity. Proc. R. Soc. B 288, 20210863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Gibbs, S. J. et al. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 6, eabc9123 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Birch, H. S., Coxall, H. K. & Pearson, P. N. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth, habitat and symbiosis. Paleobiology 38, 374–390 (2012).

    Article  Google Scholar 

  28. Pearson, P. N., John, E., Wade, B. S., D’haenens, S. & Lear, C. H. Spine-like structures in Paleogene muricate planktonic foraminifera. J. Micropalaeontol. 41, 107–127 (2022).

    Article  ADS  Google Scholar 

  29. Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article  CAS  ADS  Google Scholar 

  30. Quillévéré, F., Norris, R. D., Moussa, I. & Berggren, W. A. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarninids (planktonic foraminifera). Paleobiology 27, 311–326 (2001).

    Article  Google Scholar 

  31. Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Fraass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).

    Article  CAS  ADS  Google Scholar 

  33. Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal Cretaceous extinction. J. Foraminiferal Res. 50, 382–402 (2020).

    Article  Google Scholar 

  34. Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Global Planet. Change 167, 1–23 (2018).

    Article  ADS  Google Scholar 

  35. Speijer, R., Scheibner, C., Stassen, P. & Morsi, A. M. M. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).

    Google Scholar 

  36. Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl Acad. Sci. USA 119, e2201495119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silva, I. P. & Boersma, A. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. Mar. Micropaleontol. 14, 357–372 (1989).

    Article  ADS  Google Scholar 

  38. Douglas, P. M. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proc. Natl Acad. Sci. USA 111, 6582–6587 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Wilson, J. D., Monteiro, F. M., Schmidt, D. N., Ward, B. A. & Ridgwell, A. Linking marine plankton ecosystems and climate: a new modeling approach to the warm early Eocene climate. Paleoceanogr. Paleoclimatol. 33, 1439–1452 (2018).

    Article  ADS  Google Scholar 

  40. John, E. H. et al. Warm ocean processes and carbon cycling in the Eocene. Philos. Trans. R. Soc. A 371, 20130099 (2013).

    Article  ADS  Google Scholar 

  41. Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomas, E. Descent into the Icehouse. Geology 36, 191–192 (2008).

    Article  ADS  Google Scholar 

  43. Schmidt, D. N., Lazarus, D., Young, J. R. & Kucera, M. Biogeography and evolution of body size in marine plankton. Earth Sci. Rev. 78, 239–266 (2006).

    Article  ADS  Google Scholar 

  44. Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015).

    Article  ADS  Google Scholar 

  45. Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–430 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Houben, A. J., Bijl, P. K., Sluijs, A., Schouten, S. & Brinkhuis, H. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full‐scale glaciation. Geochem. Geophys. Geosyst. 20, 2214–2234 (2019).

    Article  ADS  Google Scholar 

  47. Hutchinson, D. K. et al. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Clim. Past 17, 269–315 (2021).

    Article  Google Scholar 

  48. Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Ladant, J. B., Donnadieu, Y., Bopp, L., Lear, C. H. & Wilson, P. A. Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanogr. Paleoclimatol. 33, 302–317 (2018).

    Article  ADS  Google Scholar 

  50. Coxall, H. K. & Pearson, P. N. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 351–387 (The Micropalaeontological Society, 2007).

  51. Śliwińska, K. K. et al. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition. Clim. Past 19, 123–140 (2023).

    Article  Google Scholar 

  52. Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).

    Article  ADS  Google Scholar 

  54. Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Yasuhara, M. et al. Hotspots of Cenozoic tropical marine biodiversity. Oceanogr. Mar. Biol. 60, 243–300 (2022).

    Google Scholar 

  56. Kucera, M. & Schönfeld, J. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 409–425 (The Micropalaeontological Society, 2007).

  57. Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic Foraminifera across the Western Pacific. Geosciences 12, 190 (2022).

    Article  ADS  Google Scholar 

  59. Scott, G. H., Bishop, S. & Burt, B. J. Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand (New Zealand Geological Survey, 1990).

  60. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Lazarus, D. Neptune: a marine micropaleontology database. Math. Geol. 26, 817–832 (1994).

    Article  Google Scholar 

  62. Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2, a13 (1999).

    Google Scholar 

  63. Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Renaudie, J., Lazarus, D. B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).

    Google Scholar 

  65. Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera Special Publication No. 46 (eds Wade, B. S. et al.) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).

  66. Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).

    Article  Google Scholar 

  67. Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil dataPACMAN PROFILING. Paleobiology 38, 144–161 (2012).

    Article  Google Scholar 

  68. Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013).

    Article  ADS  Google Scholar 

  69. Woodhouse, A. Evolutionary Dynamics of Cenozoic Planktonic Foraminifera: Insights from Biogeography, Geochemistry, and Morphology. PhD thesis, Univ. Leeds (2021).

  70. Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).

    Article  CAS  ADS  Google Scholar 

  72. Huber, B. T. et al. Pforams@ microtax. Micropaleontology 62, 429–438 (2016).

    Article  Google Scholar 

  73. Young, J. R. et al. Mikrotax: developing a genuinely effective platform for palaeontological geoinformatics. Acta Geolog. Sin. 93, 70–72 (2019).

    Article  Google Scholar 

  74. Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).

  75. Cifelli, R. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18, 154–168 (1969).

    Article  Google Scholar 

  76. Cita, M. B. & Premoli Silva, I. P. Planktonic foraminifers as ecologic indicators. Examples from the fossil record of the Mediterranean Sea and of the Atlantic Ocean. Ital. J. Zool. 45, 115–131 (1978).

    Google Scholar 

  77. Swain, A., Maccracken, S. A., Fagan, W. F. & Labandeira, C. C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2021).

  78. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article  Google Scholar 

  79. Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

  80. Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    Article  PubMed  Google Scholar 

  81. Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).

    Article  Google Scholar 

  82. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

  83. Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant–damage‐type association networks. Ecology 104, e3922 (2023).

    Article  PubMed  Google Scholar 

  84. Swain, A. Biogeographic patterns in Cenozoic foram functional groups. Zenodo https://doi.org/10.5281/zenodo.7888565 (2023).

Download references

Acknowledgements

A.S. and W.F.F. were supported by the University of Maryland, A.W. was supported by a postdoctoral fellowship at the University of Texas Institute for Geophysics, and A.J.F. receives funding from NSERC through DGECR-2022-00141 and RGPIN-2022-03305. A.S. additionally acknowledges training and technical support from the COMBINE programme at the University of Maryland, the James S. McDonnell Foundation and the Society of Fellows at Harvard University. We thank the creators of the Triton dataset—I. Fenton, T. Aze, D. Lazarus, J. Renaudie, A. Dunhill, J. Young and E. Saupe—without whom this study would not have been possible, as well as the micropalaeontologists and scientific ocean drilling staff who generated and contributed to the underlying data; and P. Pearson, J. Partin, S. D’Hondt, M. Leckie, E. Sibert and A. Auderset for scientific discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and A.W. formulated the study, generated the data and carried out the analyses. All authors contributed to the interpretation of data. A.S. and A.W. conceived and plotted the figures. A.S. wrote the code to carry out analyses. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Anshuman Swain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Helen Coxall, Brian Huber, Moriaki Yasuhara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sampling completeness over time.

Sample coverage values calculated for occurrences in different palaeolatitudinal bands for each million year slice for species, ecogroups and morphogroups. Note that small sample sizes limit confidence in estimates left of the blue dotted line (≥ 58 Ma). Also see Extended Data Fig. 2.

Extended Data Fig. 2 Spatially-explicit sampling completeness over time.

(A) Logarithmic scaling of total number of samples, (B) Sample coverage of morphogroups, (C) Sample coverage of ecogroups. Note that, as mentioned in Extended Data Fig. 1, the number of samples for ( ≥ 58 Ma) is quite low and therefore must be treated with caution. In (B) and (C), the palaeolatitudinal bands in a given time bin with less than 5 samples have been removed. Note that blue colors equal high values, whereas red colors correspond to low values.

Extended Data Fig. 3 Cenozoic climate and major climatic events, and specialization indices.

(A) Benthic δ18O and δ13C from Westerhold et al.19, PETM = Paleocene-Eocene Thermal Maximum, EECO = Early Eocene Climatic Optimum, MECO = Middle Eocene Climatic Optimum, EOT = Eocene-Oligocene Transition, OMB = Oligocene-Miocene Boundary, MCO = Miocene Climatic Optimum, INHG = Intensification of Northern Hemisphere Glaciation. (B) Morphogroup Paired difference index (MPDI), (C) Ecogroup Paired difference index (EPDI). Note that blue colors equal high ecogroup richness (B) or specialization (C), whereas red colors correspond to low values of each metric.

Extended Data Fig. 4 Shannon diversity of species, morphogroups, and ecogroups during the Cenozoic.

These metrics were calculated using Shannon entropy of count of each species (in A), morphogroup (in B) or ecogroup (in C) using the vegan package in R. Note that blue colors equal high ecogroup richness (B) or specialization (C), whereas red colors correspond to low values of each metric.

Extended Data Fig. 5 Inflection points.

Logistic function fitted to max-min normalized Morphogroup richness in (A) 66-57 Ma (Residual Standard Error (RSE): 0.07666), (C) 39-29 Ma (RSE: 0.04937), (E) 29-20 Ma (RSE: 0.07999) and (G) 24-14 Ma (RSE: 0.03875) and for max-min normalized Morphogroup Specialization Index (MSI)in (B) 66-57 Ma (RSE: 0.2119), (D) 39-29 Ma (RSE: 0.1722), (F) 29-20 Ma (RSE: 0.1036) and (H) 24-14 Ma (RSE: 0.1191) along with a line joining the predicted points from the logistic fit. The red dotted lines represent the point of inflection in each plot. Low values of RSE in these fits denote good fits.

Extended Data Fig. 6 Spatially averaged functional specialization across important time periods.

(A) Average ESI between 56-50 Ma, (B) Average MSI between 34-23 Ma.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, A., Woodhouse, A., Fagan, W.F. et al. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature (2024). https://doi.org/10.1038/s41586-024-07337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07337-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing