Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Habitat loss and range shifts contribute to ecological generalization among reef fishes

Abstract

Human activities are altering the structure of ecological communities, often favouring generalists over specialists. For reef fishes, increasingly degraded habitats and climate-driven range shifts may independently augment generalization, particularly if fishes with least-specific habitat requirements are more likely to shift geographic ranges to track their thermal niche. Using a unique global dataset on temperate and tropical reef fishes and habitat composition, we calculated a species generalization index that empirically estimates the habitat niche breadth of each fish species. We then applied the species generalization index to evaluate potential impacts of habitat loss and range shifts across large scales, on coral and rocky reefs. Our analyses revealed consistent habitat-induced shifts in community structure that favoured generalist fishes following regional coral mortality events and between adjacent sea urchin barrens and kelp habitats. Analysis of the distribution of tropical fishes also identified the species generalization index as the most important trait in predicting their poleward range extent, more so than body or range size. Generalist tropical reef fishes penetrate further into subtropical and temperate zones than specialists. Dynamic responses of reef fishes to habitat degradation imply loss of specialists at local scales, while generalists will be broadly favoured under intensifying anthropogenic pressures. An increased focus on individual requirements of specialists could provide useful guidance for species threat assessments and conservation actions, while ecosystem and multi-species fisheries models should recognize increasing prevalence of generalists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SGI values vary among species within fish families observed on the world’s reefs.
Fig. 2: CGI values for reef fishes relate to loss of coral habitat and differences between kelp and urchin barrens habitat.
Fig. 3: Southern geographic limits of Australian tropical reef fishes relate to habitat generalization.

Similar content being viewed by others

Data availability

Raw data from the RLS programme are accessible through a live data portal via the RLS website www.reeflifesurvey.com. SGI values will be accessible through the RLS Reef Species of the World online species database by 1 November 2020 (https://reeflifesurvey.com/species/search.php).

References

  1. McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).

    Article  Google Scholar 

  4. Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    Article  Google Scholar 

  5. Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    Article  Google Scholar 

  6. Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).

    Article  PubMed  Google Scholar 

  7. Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).

    Article  Google Scholar 

  8. Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).

    Article  Google Scholar 

  13. Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  PubMed  Google Scholar 

  16. Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).

    Article  Google Scholar 

  17. Monaco, C. J. et al. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Glob. Change Biol. 26, 5564–5573 (2020).

    Article  Google Scholar 

  18. Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (2015).

    Article  Google Scholar 

  19. Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article  Google Scholar 

  20. Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pratchett, M. S. et al. in Oceanography and Marine Biology: Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (Taylor and Francis, 2008).

  22. Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Feary, D. A. The influence of resource specialization on the response of reef fish to coral disturbance. Mar. Biol. 153, 153–161 (2007).

    Article  Google Scholar 

  24. Mellin, C., Bradshaw, C., Fordham, D. & Caley, M. Strong but opposing β-diversity–stability relationships in coral reef fish communities. Proc. R. Soc. B 281, 20131993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    Article  PubMed  Google Scholar 

  27. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).

    Article  Google Scholar 

  30. Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15, 593–615 (2014).

    Article  Google Scholar 

  31. Guisan, A. et al. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Glob. Ecol. Biogeogr. 28, 1384–1392 (2019).

    Article  Google Scholar 

  32. Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article  Google Scholar 

  33. Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).

    Article  Google Scholar 

  34. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).

    Article  Google Scholar 

  37. Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Graham, M. H., Kinlan, B. P. & Grosberg, R. K. Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc. R. Soc. B 277, 399–406 (2010).

    Article  PubMed  Google Scholar 

  39. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article  PubMed  Google Scholar 

  44. Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).

    Article  Google Scholar 

  45. Edgar, G. J., Barrett, N. S. & Stuart-Smith, R. D. Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecol. Appl. 19, 1967–1974 (2009).

    Article  PubMed  Google Scholar 

  46. Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).

    Article  PubMed  Google Scholar 

  48. Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article  Google Scholar 

  50. Becker, R. A., Wilks, A. R (original S code) & Brownrigg, R. (R version). mapdata: Extra map databases. R package version 2.3.0 (2018).

  51. Matis, P. A., Donelson, J. M., Bush, S., Fox, R. J. & Booth, D. J. Temperature influences habitat preference of coral reef fishes: will generalists become more specialised in a warming ocean? Glob. Change Biol. 24, 3158–3169 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many RLS divers and scientific collaborators who assisted with field surveys, A. Cooper, J. Berkhout and E. Clausius at the University of Tasmania for logistics and data management, and D. Ceccarelli, E. Oh, A. Cresswell and J. Duggan for analysis of photoquadrats. We also thank N. Barrett, J. Stuart-Smith, S. Baker and T. Bird for further support in the development of RLS, fieldwork and concepts explored in the paper. Development of RLS was supported by the former Commonwealth Environment Research Facilities Program, while analyses were supported by the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program, and by the Australian Research Council. Funding and support for GBR field surveys was provided by The Ian Potter Foundation and Ningaloo surveys by the Western Australian State NRM. RLS data management is supported by Australia’s Integrated Marine Observing System. The Integrated Marine Observing System is enabled by the National Collaborative Research Infrastructure Strategy. It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as lead agent.

Author information

Authors and Affiliations

Authors

Contributions

R.D.S.-S. conceived the study and drafted the manuscript, G.J.E. and R.D.S.-S. led data collection, C.M. and R.D.S.-S. developed the SGI with input from colleagues, C.M. and A.E.B. analysed the data, and all authors contributed to the writing.

Corresponding author

Correspondence to Rick D. Stuart-Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Extended data

Extended Data Fig. 1 Habitat categories and representation across realms.

Numbers are average % cover of habitat categories.

Extended Data Fig. 2 Distribution of sites with photoquadrat data (n = 4,070 transects) used for quantifying habitat volume.

Site symbols are coloured by realm.

Extended Data Fig. 3 The global habitat volume captured by surveyed reefs.

Principal Coordinates Analysis of habitat structure scored from photoquadrats on 4,070 reef surveys (a). The primary axis of variation from macroalgae (kelps and fucoid algae) to corals explains 22% (PCO1), with the subsequent axes explaining 19% (PCO2) and 17% (PCO3) of total variation. Two dimensional representations of PCO1 versus PCO2 (b), and PCO1 versus PCO3 (c) distinguish temperate (black symbols), tropical (red symbols) sites.

Extended Data Fig. 4 CGI change at sites affected by disturbance (from Fig. 2a) relates to gains in generalist species and losses of specialist species (that is, species turnover).

The Y-axis is the mean SGI of species which were only recorded at a site prior to disturbance minus the mean SGI of those only recorded at that site following the disturbance. Coloured quadrants therefore indicate sites with a net signal of generalisation (blue quadrant, bottom right) and sites with a net signal of specialisation (red, top left) arising from species replacement.

Extended Data Fig. 5 Model summary results plotted in Figs. 2 and 3.

Bold terms are significant.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuart-Smith, R.D., Mellin, C., Bates, A.E. et al. Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nat Ecol Evol 5, 656–662 (2021). https://doi.org/10.1038/s41559-020-01342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01342-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing