Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Interactions between climate change and urbanization will shape the future of biodiversity

Abstract

Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research opportunities and ways to design resilient landscapes that address both biological and societal concerns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Future scenarios for global urbanization and climate change.
Fig. 2: Global variation in urban heat island effects through time for selected global cities.
Fig. 3: A common experimental design for testing hypotheses.

Similar content being viewed by others

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. World Urbanization Prospects: The 2018 Revision (United Nations, 2018).

  3. Moreno-Monroy, A. I., Schiavina, M. & Veneri, P. Metropolitan areas in the world: delineation and population trends. J. Urban Econ. 125, 103242 (2021).

    Article  Google Scholar 

  4. Elmqvist, T. et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (Springer Nature, 2013).

  5. Szulkin, M., Munshi-South, J. & Charmantier, A. Urban Evolutionary Biology (Oxford Univ. Press, 2020).

  6. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    Article  CAS  Google Scholar 

  7. Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    Article  CAS  Google Scholar 

  8. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  Google Scholar 

  9. Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021). This paper defines the socio-eco-evolutionary dynamics that need to be understood in cities; this concept provides the underlying basis for this Perspective.

  10. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  11. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  Google Scholar 

  12. Geerts, A. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).

    Article  Google Scholar 

  13. Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

    Article  CAS  Google Scholar 

  14. Donihue, C. M. et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proc. Natl Acad. Sci. USA 117, 10429–10434 (2020).

    Article  CAS  Google Scholar 

  15. Bitter, M. C., Kapsenberg, L., Gattuso, J. P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).

    Article  CAS  Google Scholar 

  16. Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70, 772–793 (2020).

    Article  Google Scholar 

  17. Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    Article  Google Scholar 

  18. Sidemo‐Holm, W., Ekroos, J., Reina García, S., Söderström, B. & Hedblom, M. Urbanization causes biotic homogenization of woodland bird communities at multiple spatial scales. Glob. Change Biol. 28, 6152–6164 (2022).

    Article  Google Scholar 

  19. McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  20. McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).

    Article  Google Scholar 

  21. van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).

    Article  Google Scholar 

  22. Piano, E. et al. Urbanization drives cross‐taxon declines in abundance and diversity at multiple spatial scales. Glob. Change Biol. 26, 1196–1211 (2020).

    Article  Google Scholar 

  23. Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2016).

  24. Chapman, S., Watson, J. E., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc. Ecol. 32, 1921–1935 (2017). This review finds that most studies evaluate either urban heat island effects or climate change but rarely consider their joint impacts, and it issues a call to action.

    Article  Google Scholar 

  25. Nelson, K. C. et al. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. J. Appl. Ecol. 46, 154–163 (2009).

    Article  Google Scholar 

  26. Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. Bioscience 71, 148–160 (2021).

    Article  Google Scholar 

  27. Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. Trends Ecol. Evol. 37, 1006–1019 (2022). This paper supplies 30 questions at the interface of urbanization and eco-evolution, including the need to consider interactions between urbanization and climate change.

  28. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  29. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  30. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  31. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020). This review highlights how structural racism and classism affect the distribution of ecosystem benefits in cities.

    Article  CAS  Google Scholar 

  32. Niinemets, Ü. et al. Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Reg. Environ. Change 17, 2061–2077 (2017).

    Article  Google Scholar 

  33. Xu, D., Gao, J., Lin, W. & Zhou, W. Differences in the ecological impact of climate change and urbanization. Urban Clim. 38, 100891 (2021).

    Article  Google Scholar 

  34. Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 1–19 (2013).

    Article  Google Scholar 

  35. Albert, C., Rayfield, B., Dumitru, M. & Gonzalez, A. Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change. Conserv. Biol. 31, 1383–1396 (2017).

    Article  Google Scholar 

  36. Lian, X. et al. Artificial light pollution inhibits plant phenology advance induced by climate warming. Environ. Pollut. 291, 118110 (2021).

    Article  CAS  Google Scholar 

  37. Hillier, A. E. Redlining and the Home Owners’ Loan Corporation. J. Urban Hist. 29, 394–420 (2003).

    Article  Google Scholar 

  38. Urban, M. C. et al. Evolutionary origins for ecological patterns in space. Proc. Natl Acad. Sci. USA 117, 17482–17490 (2020).

    Article  CAS  Google Scholar 

  39. Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). NPJ Clim. Atmos. Sci. 1, 32 (2018).

    Article  Google Scholar 

  40. Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).

    Article  CAS  Google Scholar 

  41. Oleson, K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Clim. 25, 1390–1412 (2012).

    Article  Google Scholar 

  42. Chen, A., Yao, X. A., Sun, R. & Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 13, 646–654 (2014).

    Article  Google Scholar 

  43. Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).

    Article  Google Scholar 

  44. Burley, H. et al. Substantial declines in urban tree habitat predicted under climate change. Sci. Total Environ. 685, 451–462 (2019).

    Article  CAS  Google Scholar 

  45. Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).

    Article  Google Scholar 

  46. Tryjanowski, P., Sparks, T. H., Kuźniak, S., Czechowski, P. & Jerzak, L. Bird migration advances more strongly in urban environments. PLoS ONE 8, e63482 (2013).

    Article  CAS  Google Scholar 

  47. Meng, L. et al. Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proc. Natl Acad. Sci. USA 117, 4228–4233 (2020). This study evaluates phenological responses in response to both urbanization and climate change and finds a slowing of temperature-driven responses in urban plants that might reduce their capacity to respond to future temperature extremes.

    Article  CAS  Google Scholar 

  48. Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. Glob. Change Biol. 27, 892–903 (2021).

    Article  CAS  Google Scholar 

  49. Fisogni, A. et al. Urbanization drives an early spring for plants but not for pollinators. Oikos 129, 1681–1691 (2020).

    Article  CAS  Google Scholar 

  50. Meineke, E. K., Dunn, R. R. & Frank, S. D. Early pest development and loss of biological control are associated with urban warming. Biol. Lett. 10, 20140586 (2014).

    Article  Google Scholar 

  51. Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    Article  Google Scholar 

  52. Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017). Example of how urban heat islands can lead to adaptation in aquatic environments.

    Article  Google Scholar 

  53. Winchell, K. M. et al. Genome-wide parallelism underlies contemporary adaptation in urban lizards. Proc. Natl Acad. Sci. USA 120, e2216789120 (2023).

    Article  CAS  Google Scholar 

  54. Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban–rural temperature cline. Biol. J. Linn. Soc. 121, 248–257 (2017).

    Article  Google Scholar 

  55. Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).

    Article  CAS  Google Scholar 

  56. Buyantuyev, A. & Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: a case study of the Phoenix metropolitan region, USA. J. Arid Environ. 73, 512–520 (2009).

    Article  Google Scholar 

  57. Roach, W. J. et al. Unintended consequences of urbanization for aquatic ecosystems: a case study from the Arizona desert. Bioscience 58, 715–727 (2008).

    Article  Google Scholar 

  58. Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    Article  CAS  Google Scholar 

  59. Mayrose, M., Kane, N. C., Mayrose, I., Dlugosch, K. M. & Rieseberg, L. H. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Mol. Ecol. 20, 4683–4694 (2011).

    Article  Google Scholar 

  60. Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).

    Article  Google Scholar 

  61. Pumo, D., Arnone, E., Francipane, A., Caracciolo, D. & Noto, L. Potential implications of climate change and urbanization on watershed hydrology. J. Hydrol. 554, 80–99 (2017).

    Article  Google Scholar 

  62. Zhou, Q., Leng, G., Su, J. & Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: importance of urban planning and drainage adaptation. Sci. Total Environ. 658, 24–33 (2019).

    Article  CAS  Google Scholar 

  63. Liu, J. & Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 9, 7301 (2019).

    Article  Google Scholar 

  64. Palmer, T. & Räisänen, J. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512–514 (2002).

    Article  CAS  Google Scholar 

  65. McGrane, S. J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol. Sci. J. 61, 2295–2311 (2016).

    Article  Google Scholar 

  66. Des Roches, S., Bell, M. A. & Palkovacs, E. P. Climate‐driven habitat change causes evolution in threespine stickleback. Glob. Change Biol. 26, 597–606 (2020).

    Article  Google Scholar 

  67. King, R. S., Scoggins, M. & Porras, A. Stream biodiversity is disproportionately lost to urbanization when flow permanence declines: evidence from southwestern North America. Freshw. Sci. 35, 340–352 (2016).

    Article  Google Scholar 

  68. Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis. Glob. Change Biol. 22, 180–189 (2016).

    Article  Google Scholar 

  69. Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).

    Article  Google Scholar 

  70. Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).

    Article  Google Scholar 

  71. McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).

    Article  Google Scholar 

  72. Benson, J. F. et al. Extinction vortex dynamics of top predators isolated by urbanization. Ecol. Appl. 29, e01868 (2019).

    Article  Google Scholar 

  73. McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).

    Article  CAS  Google Scholar 

  74. Piano, E. et al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob. Change Biol. 23, 2554–2564 (2017).

    Article  Google Scholar 

  75. Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).

    Article  CAS  Google Scholar 

  76. Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    Article  Google Scholar 

  77. Richardson, J. L. et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evol. Appl. 14, 163–177 (2021).

    Article  CAS  Google Scholar 

  78. Miles, L. S., Breitbart, S. T., Wagner, H. H. & Johnson, M. T. Urbanization shapes the ecology and evolution of plant–arthropod herbivore interactions. Front. Ecol. Evol. 7, 310 (2019).

    Article  Google Scholar 

  79. Miles, L. S., Rivkin, L. R., Johnson, M. T., Munshi‐South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).

    Article  Google Scholar 

  80. Miles, L. S., Johnson, J. C., Dyer, R. J. & Verrelli, B. C. Urbanization as a facilitator of gene flow in a human health pest. Mol. Ecol. 27, 3219–3230 (2018). This study demonstrates higher gene flow in urban populations of the black widow spider than in rural areas, suggesting that cities not only limit connectivity but also can sometimes enhance it.

  81. Yakub, M. & Tiffin, P. Living in the city: urban environments shape the evolution of a native annual plant. Glob. Change Biol. 23, 2082–2089 (2017).

    Article  Google Scholar 

  82. Cheptou, P.-O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

    Article  CAS  Google Scholar 

  83. Tüzün, N., Op de Beeck, L. & Stoks, R. Sexual selection reinforces a higher flight endurance in urban damselflies. Evol. Appl. 10, 694–703 (2017).

    Article  Google Scholar 

  84. Henry, R. C., Bocedi, G. & Travis, J. M. J. Eco-evolutionary dynamics of range shifts: elastic margins and critical thresholds. J. Theor. Biol. 321, 1–7 (2013).

    Article  Google Scholar 

  85. Waajen, G. W. A. M., Faassen, E. J. & Lürling, M. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples. Environ. Sci. Pollut. Res. 21, 9983–9994 (2014).

    Article  CAS  Google Scholar 

  86. Jeppesen, E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 38, 1930–1941 (2009).

    Article  CAS  Google Scholar 

  87. Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).

    Article  Google Scholar 

  88. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  Google Scholar 

  89. Chislock, M. F., Sarnelle, O., Olsen, B. K., Doster, E. & Wilson, A. E. Large effects of consumer offense on ecosystem structure and function. Ecology 94, 2375–2380 (2013).

    Article  Google Scholar 

  90. Jiang, X., Liang, H., Chen, Y., Xu, X. & Huang, D. Microgeographic adaptation to toxic cyanobacteria in two aquatic grazers. Limnol. Oceanogr. 60, 947–956 (2015).

    Article  Google Scholar 

  91. Spear, J. E., Grijalva, E. K., Michaels, J. S. & Parker, S. S. Ecological spillover dynamics of organisms from urban to natural landscapes. J. Urban Ecol. 4, juy008 (2018).

    Article  Google Scholar 

  92. Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).

    Article  Google Scholar 

  93. Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species: an example from ants. Urban Ecosyst. 14, 135–163 (2011).

    Article  Google Scholar 

  94. Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).

    Article  Google Scholar 

  95. Martin, R. A., Chick, L. D., Yilmaz, A. R. & Diamond, S. E. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban–rural temperature cline. Evol. Appl. 12, 1678–1687 (2019).

    Article  Google Scholar 

  96. Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).

    Article  Google Scholar 

  97. Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    Article  Google Scholar 

  98. Altermatt, F., Pajunen, V. I. & Ebert, D. Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob. Change Biol. 14, 1209–1220 (2008).

    Article  Google Scholar 

  99. De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).

    Article  Google Scholar 

  100. Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543 (2008).

    Article  Google Scholar 

  101. Jansen, M., Stoks, R., Coors, A., Van Doorslaer, W. & De Meester, L. Collateral damage: rapid exposure‐induced evolution of pesticide resistance leads to increased susceptibility to parasites. Evolution 65, 2681–2691 (2011).

    Article  Google Scholar 

  102. Padayachee, A. L. et al. How do invasive species travel to and through urban environments? Biol. Invasions 19, 3557–3570 (2017).

    Article  Google Scholar 

  103. Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14, e0225852 (2019).

    Article  CAS  Google Scholar 

  104. Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B 285, 20172806 (2018).

    Article  Google Scholar 

  105. Wilke, A. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).

    Article  Google Scholar 

  106. Nadeau, C. P., Farkas, T. E., Makkay, A. M., Papke, R. T. & Urban, M. C. Adaptation reduces competitive dominance and alters community assembly. Proc. R. Soc. B 288, 20203133 (2021).

    Article  Google Scholar 

  107. Gillespie, R. Community assembly through adaptive radiation in Hawaiian spiders. Science 303, 356–359 (2004).

    Article  CAS  Google Scholar 

  108. Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  Google Scholar 

  109. Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article  Google Scholar 

  110. Qiu, T., Song, C., Zhang, Y., Liu, H. & Vose, J. M. Urbanization and climate change jointly shift land surface phenology in the northern mid-latitude large cities. Remote Sens. Environ. 236, 111477 (2020).

    Article  Google Scholar 

  111. Zhou, Y. Understanding urban plant phenology for sustainable cities and planet. Nat. Clim. Change 12, 302–304 (2022).

    Article  Google Scholar 

  112. Egert-Berg, K. et al. Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biol. 19, 123 (2021).

    Article  Google Scholar 

  113. Zaninotto, V. et al. Broader phenology of pollinator activity and higher plant reproductive success in an urban habitat compared to a rural one. Ecol. Evol. 10, 11607–11621 (2020).

    Article  Google Scholar 

  114. Rivkin, L. R., Nhan, V. J., Weis, A. E. & Johnson, M. T. Variation in pollinator-mediated plant reproduction across an urbanization gradient. Oecologia 192, 1073–1083 (2020).

    Article  Google Scholar 

  115. Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717 (2007).

    Article  Google Scholar 

  116. Gorton, A. J., Moeller, D. A. & Tiffin, P. Little plant, big city: a test of adaptation to urban environments in common ragweed (Ambrosia artemisiifolia). Proc. R. Soc. B 285, 20180968 (2018).

    Article  Google Scholar 

  117. Synes, N. W. et al. Coupled land use and ecological models reveal emergence and feedbacks in socio‐ecological systems. Ecography 42, 814–825 (2019).

    Article  Google Scholar 

  118. McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).

    Article  Google Scholar 

  119. Winchell, K. M. et al. Moving past the challenges and misconceptions in urban adaptation research. Ecol. Evol. 12, e9552 (2022).

    Article  Google Scholar 

  120. Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: cities as surrogates for global change. Proc. R. Soc. B 285, 20180643 (2018).

    Article  Google Scholar 

  121. Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R. & Frank, S. D. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Change Biol. 21, 97–105 (2015). This empirical study demonstrates that a scale insect responds similarly to temperature increases in cities and rural areas, suggesting the ability to use urban systems to learn about climate change responses.

  122. Sharkey, P. Stuck in Place: Urban Neighborhoods and the End of Progress toward Racial Equality (Univ. Chicago Press, 2013).

  123. Pinna, F., Garau, C. & Annunziata, A. A Literature review on urban usability and accessibility to investigate the related criteria for equality in the city. In International Conference on Computational Science and Its Applications (eds Gervasi, O. et al.) 525–541 (Springer, 2021).

  124. Hobbie, S. E. & Grimm, N. B. Nature-based approaches to managing climate change impacts in cities. Phil. Trans. R. Soc. B 375, 20190124 (2020). This perspective calls for using living organisms and ecosystem features to lessen climate change impacts in urban areas.

    Article  Google Scholar 

  125. Goddard, M. A. et al. A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nat. Ecol. Evol. 5, 219–230 (2021).

    Article  Google Scholar 

  126. Andersson, E., Borgström, S. & McPhearson, T. in Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Theory and Practice of Urban Sustainability Transitions (eds Kabisch, N. et al.) 51–64 (Springer, 2017).

  127. Depietri, Y. & McPhearson, T. in Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Theory and Practice of Urban Sustainability Transitions (eds Kabisch, N. et al.) 91–109 (Springer, 2017).

  128. Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020).

    Article  Google Scholar 

  129. Hostetler, N. E. & McIntyre, M. E. Effects of urban land use on pollinator (Hymenoptera: Apoidea) communities in a desert metropolis. Basic Appl. Ecol. 2, 209–218 (2001).

    Article  Google Scholar 

  130. Rosenzweig, M. L. Reconciliation ecology and the future of species diversity. Oryx 37, 194–205 (2003).

    Article  Google Scholar 

  131. Iturbide, M. et al. Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository. Sci. Data 9, 629 (2022).

    Article  Google Scholar 

  132. Star Cloud Data Service Platform (Peng Cheng Laboratory, 2024); http://data.starcloud.pcl.ac.cn/

  133. Zhang, T., Zhou, Y., Zhu, Z., Li, X. & Asrar, G. A Global Seamless 1 km Resolution Daily Land Surface Temperature Dataset (2003–2020) (Iowa State Univ., 2021); https://doi.org/10.25380/iastate.c.5078492.v3

Download references

Acknowledgements

This study is a collaborative effort of the National Science Foundation Research Coordination Network: Eco-Evolutionary Dynamics in an Urban Planet: Underlying Mechanisms and Ecosystem Feedbacks (DEB 1840663). We acknowledge the many participants in this working group that directly and indirectly contributed to our development of the five presented hypotheses. M.C.U. was supported by NSF award no. DEB-1119877, National Science Foundation NRT grant no. 2022036, NASA awards no. 80NSSC22K0883 and no. 80NSSC19K0476, the Arden Chair in Ecology and Evolutionary Biology, and a Leverhulme visiting professorship. P.R. thanks the Max Planck Society for funding.

Author information

Authors and Affiliations

Authors

Contributions

M.C.U., M.A., L.D.M. and K.I.B. conceived of the overall idea. All authors wrote the paper. Y.Z. provided data used in the heat island calculations. A.N.M. developed Fig. 1. M.A. led the research coordination network that brought these authors together.

Corresponding author

Correspondence to Mark C. Urban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Jie Liang, Robert McDonald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban, M.C., Alberti, M., De Meester, L. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41558-024-01996-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing