Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Permafrost thaw drives surface water decline across lake-rich regions of the Arctic

Matters Arising to this article was published on 05 October 2023

Abstract

Lakes constitute 20–40% of Arctic lowlands, the largest surface water fraction of any terrestrial biome. These lakes provide crucial habitat for wildlife, supply water for remote Arctic communities and play an important role in carbon cycling and the regional energy balance. Recent evidence suggests that climate change is shifting these systems towards long-term wetting (lake formation or expansion) or drying. The net direction and cause of these shifts, however, are not well understood. Here, we present evidence for large-scale drying across lake-rich regions of the Arctic over the past two decades (2000–2021), a trend that is correlated with increases in annual air temperature and autumn rain. Given that increasing air temperatures and autumn rain promote permafrost thaw, our results indicate that permafrost thaw is leading to widespread surface water decline, challenging models that do not predict a net decrease in lake area until the mid-twenty-first or twenty-second centuries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Change in the average July superfine water index (yr−1) from 2000 to 2021.
Fig. 2: Pixel-wise surface water trends (change in the July SWI (yr−1) from 2000 to 2021).
Fig. 3: Relative importance of predictor variables in explaining surface water trends across the study region.
Fig. 4: Predictor variables contributing the most to surface water trends in 12 km pixels, as determined using Shapley values.

Similar content being viewed by others

Data availability

The analysis in this study relied on datasets from the following sources, all of which are freely available to the public. The climate trends were generated using Copernicus Climate Change Service Information [2022] ERA5-Land hourly data (2 m temperature, total evaporation, snowmelt, snowfall and total precipitation) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview). The surface water trends were generated using the MODIS MCD43A4.006 product (https://doi.org/10.5067/MODIS/MCD43A4.006). Snow cover trends were generated using the MODIS MOD10A1.006 product (https://doi.org/10.5067/MODIS/MOD10A1.006). Fire masking was based on MODIS MCD64A1.006 (https://doi.org/10.5067/MODIS/MCD64A1.006), fire perimeters for eastern Siberia taiga and tundra (https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2N87311N), the Canadian National Forest Service National Fire Database fire perimeters (http://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nfdbpoly) and the Alaska Interagency Coordination Center Wildland Fire Maps (https://fire.ak.blm.gov/predsvcs/maps.php). Land cover masking was based on the ESA CCI land cover 2015 product (https://www.esa-landcover-cci.org/?q=node/164). Permafrost extent, ground cover content and overburden thickness data were from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions v.2 (https://doi.org/10.7265/skbg-kf16). Lake cover percentage was from the Boreal-Arctic Wetland and Lake dataset (https://arcticdata.io/catalog/view/doi:10.18739/A2C824F9X). Thermokarst lake and thermokarst wetland coverage was from the Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes dataset (https://doi.org/10.3334/ORNLDAAC/1332). Surface water trends generated for this study are archived through the Arctic Data Center (https://doi.org/10.18739/A2037V). Source data are provided with this paper.

Code availability

Google Earth Engine code used to calculate surface water and climate variable trends and Python code used to perform machine learning analysis are available on GitHub (https://github.com/webb-e/Pan-Arctic-SWchange).

References

  1. Ballinger, T. J. et al. Surface Air Temperature (NOAA, 2021); https://doi.org/10.25923/53xd-9k68

  2. Box, J. E. et al. Key indicators of Arctic climate change: 1971-2017. Env. Res. Lett 14, 045010 (2019).

    Article  CAS  Google Scholar 

  3. Fujinami, H., Yasunari, T. & Watanabe, T. Trend and interannual variation in summer precipitation in eastern Siberia in recent decades. Int. J. Climatol. 36, 355–368 (2016).

    Article  Google Scholar 

  4. Vihma, T. et al. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J. Geophys. Res. G 121, 586–620 (2016).

    Article  Google Scholar 

  5. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Article  CAS  Google Scholar 

  6. Runge, A., Nitze, I. & Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 268, 112752 (2022).

    Article  Google Scholar 

  7. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Article  Google Scholar 

  8. Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the Western Northwest Territories, Canada. Permafr. Periglac. Process. 28, 619–633 (2017).

    Article  Google Scholar 

  9. Vasiliev, A. A. et al. Permafrost degradation in the Western Russian Arctic. Environ. Res. Lett. 15, 045001 (2020).

    Article  Google Scholar 

  10. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    Article  CAS  Google Scholar 

  11. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429 (2005).

    Article  CAS  Google Scholar 

  12. Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology (eds Shroder, J. et al.) 325–353 (Academic Press, 2013).

  13. Webb, E. E., Loranty, M. M. & Lichstein, J. W. Surface water, vegetation, and fire as drivers of the terrestrial Arctic-boreal albedo feedback. Environ. Res. Lett. 16, 084046 (2021).

    Article  Google Scholar 

  14. van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Change 1, 119–123 (2011).

    Article  Google Scholar 

  15. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Article  CAS  Google Scholar 

  16. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Article  CAS  Google Scholar 

  17. Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Article  Google Scholar 

  18. in’t Zandt, M. H., Liebner, S. & Welte, C. U. Roles of thermokarst lakes in a warming world. Trends Microbiol. 28, 769–779 (2020).

    Article  Google Scholar 

  19. Jones, B. M. et al. Lake and drained lake basin systems in Arctic and Boreal permafrost regions. Nat. Rev. Earth Environ 3, 85–98 (2022).

    Article  Google Scholar 

  20. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  Google Scholar 

  21. Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).

    Article  Google Scholar 

  22. Carroll, M. L. & Loboda, T. V. Multi-decadal surface water dynamics in North American tundra. Remote Sens 9, 497 (2017).

    Article  Google Scholar 

  23. Finger Higgens, R. A. et al. Changing lake dynamics indicate a drier Arctic in Western Greenland. J. Geophys. Res. G 124, 870–883 (2019).

    Article  Google Scholar 

  24. Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sens. 6, 621–636 (2014).

    Article  Google Scholar 

  25. Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. G https://doi.org/10.1029/2011JG001666 (2011).

  26. Sharma, R. C., Tateishi, R., Hara, K. & Nguyen, L. V. Developing Superfine Water Index (SWI) for global water cover mapping using MODIS data. Remote Sens. 7, 13807–13841 (2015).

    Article  Google Scholar 

  27. Nitze, I. et al. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere 14, 4279–4297 (2020).

    Article  Google Scholar 

  28. Lara, M. J., Chen, Y. & Jones, B. M. Recent warming reverses forty-year decline in catastrophic lake drainage and hastens gradual lake drainage across northern Alaska. Env. Res. Lett 16, 124019 (2021).

    Article  Google Scholar 

  29. Marsh, P., Russell, M., Pohl, S., Haywood, H. & Onclin, C. Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000. Hydrol. Process. 23, 145–158 (2009).

    Article  Google Scholar 

  30. Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present (Climate Data Store, 2019); https://doi.org/10.24381/cds.e2161bac

  31. Dobricic, S., Russo, S., Pozzoli, L., Wilson, J. & Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 15, 024022 (2020).

    Article  Google Scholar 

  32. Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).

    Article  Google Scholar 

  33. McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Screen, J. A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 16765 (2021).

    Article  Google Scholar 

  34. Yu, L. & Zhong, S. Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol. 145, 1541–1559 (2021).

    Article  Google Scholar 

  35. Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Clim. Atmos. Sci 3, 28 (2020).

    Article  Google Scholar 

  36. Iijima, Y. et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafr. Periglac. Process. 21, 30–41 (2010).

    Article  Google Scholar 

  37. Romanovsky, V. E. & Osterkamp, T. E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr. Periglac. Process 11, 219–239 (2000).

    Article  Google Scholar 

  38. Kokelj, S. V. et al. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob. Planet. Change 129, 56–68 (2015).

    Article  Google Scholar 

  39. Christensen, T. R. et al. Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems 24, 122–136 (2021).

    Article  CAS  Google Scholar 

  40. Fortier, D., Allard, M. & Shur, Y. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr. Periglac. Process. 18, 229–243 (2007).

    Article  Google Scholar 

  41. Jones, B. M. & Arp, C. D. Observing a catastrophic thermokarst lake drainage in Northern Alaska. Permafr. Periglac. Process. 26, 119–128 (2015).

    Article  Google Scholar 

  42. Throckmorton, H. M. et al. Active layer hydrology in an Arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrol. Process. 30, 4972–4986 (2016).

    Article  Google Scholar 

  43. Swanson, D. K. Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arct. Antarct. Alp. Res. 51, 265–279 (2019).

    Article  Google Scholar 

  44. Connon, R. F., Quinton, W. L., Craig, J. R. & Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 28, 4163–4178 (2014).

    Article  Google Scholar 

  45. Brewer, M. C. The thermal regime of an Arctic lake. Eos Trans. Am. Geophys. Union 39, 278–284 (1958).

    Article  Google Scholar 

  46. Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. Res. 40, 1219–1236 (2010).

    Article  Google Scholar 

  47. Yoshikawa, K. & Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 14, 151–160 (2003).

    Article  Google Scholar 

  48. Jorgenson, M. T. et al. Permafrost Characteristics of Alaska (University of Alaska Fairbanks, 2008); https://permafrost.gi.alaska.edu/sites/default/files/AlaskaPermafrostMap_Front_Dec2008_Jorgenson_etal_2008.pdf

  49. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Article  Google Scholar 

  50. Lacelle, D., Bjornson, J. & Lauriol, B. Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik plateau, Richardson mountains, NWT, Canada. Permafr. Periglac. Process. 21, 1–15 (2010).

    Article  Google Scholar 

  51. Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).

    Article  CAS  Google Scholar 

  52. Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Env. Res. Lett 16, 024008 (2021).

    Article  Google Scholar 

  53. Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

    Article  Google Scholar 

  54. Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482 (2014).

    Article  CAS  Google Scholar 

  55. White, D. M., Craig Gerlach, S., Loring, P., Tidwell, A. C. & Chambers, M. C. Food and water security in a changing Arctic climate. Env. Res. Lett 2, 045018 (2007).

    Article  Google Scholar 

  56. Medeiros, A. S., Wood, P., Wesche, S. D., Bakaic, M. & Peters, J. F. Water security for northern peoples: review of threats to Arctic freshwater systems in Nunavut, Canada. Reg. Environ. Change 17, 635–647 (2017).

    Article  Google Scholar 

  57. Roach, J. K. & Griffith, B. Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness. Landsc. Ecol. 30, 1005–1022 (2015).

    Article  Google Scholar 

  58. Cott, P. A., Sibley, P. K., Somers, W. M., Lilly, M. R. & Gordon, A. M. A review of water level fluctuations on aquatic biota with an emphasis on fishes in ice-covered lakes. J. Am. Water Resour. Assoc. 44, 343–359 (2008).

    Article  Google Scholar 

  59. Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. G https://doi.org/10.1029/2011JG001766 (2012).

  60. Sturtevant, C. S. & Oechel, W. C. Spatial variation in landscape-level CO2 and CH4 fluxes from Arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Glob. Change Biol. 19, 2853–2866 (2013).

    Article  Google Scholar 

  61. Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Article  CAS  Google Scholar 

  62. Kuhn, M. A. et al. BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and Arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).

    Article  Google Scholar 

  63. Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region—a model intercomparison. Cryosphere 14, 445–459 (2020).

    Article  Google Scholar 

  64. Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Article  Google Scholar 

  65. Tan, Z. & Zhuang, Q. Methane emissions from pan-Arctic lakes during the 21st century: an analysis with process-based models of lake evolution and biogeochemistry. J. Geophys. Res. G 120, 2641–2653 (2015).

    Article  CAS  Google Scholar 

  66. Olefeldt, D. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  CAS  Google Scholar 

  67. Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions v.2 (NSIDC, accessed October 2021); https://doi.org/10.7265/skbg-kf16

  68. Olefeldt, D. et al. The Boreal-Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).

    Article  Google Scholar 

  69. Defourny, P. ESA Land Cover Climate Change Initiative (Land_Cover_cci): Global Land Cover Maps v.2.0 (ESA, 2017).

  70. Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).

    Article  CAS  Google Scholar 

  71. Travers-Smith, H. Z., Lantz, T. C. & Fraser, R. H. Surface water dynamics and rapid lake drainage in the Western Canadian Subarctic (1985–2020). J. Geophys. Res. G 126, e2021 (2021).

    Google Scholar 

  72. Alaska Fire History Perimeter Polygons (Alaska Interagency Coordination Center, 2021); https://fire.ak.blm.gov/content/maps/aicc/Data/Data%20(zipped%20filegeodatabases)/AlaskaFireHistoryPerimeters_NWCG_AICC_1940_2021.zip

  73. National Fire Database—Agency Provided Fire Perimeters (Canadian National Forest Service, 2019); http://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nfdbpoly

  74. Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MCD64A1.006

  75. Talucci, A. C., Loranty, M. M. & Alexander, H. D. Siberian taiga and tundra fire regimes from 2001–2020. Environ. Res. Lett. 17, 025001 (2022).

    Article  Google Scholar 

  76. Schaaf, C. & Wang, Z. MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global 500m V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MCD43A4.006

  77. Hall, D. K. & Riggs, G. A. MODIS/Aqua Snow Cover Dly. L3 Glob. 500m. SIN Grid, Version 6 (MYD10AI) [Data set] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016); https://doi.org/10.5067/MODIS/MYD10A1.006

  78. Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  79. Chen, C., He, B., Yuan, W., Guo, L. & Zhang, Y. Increasing interannual variability of global vegetation greenness. Env. Res. Lett. 14, 124005 (2019).

  80. Guay, K. C. et al. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob. Change Biol. 20, 3147–3158 (2014).

    Article  Google Scholar 

  81. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article  CAS  Google Scholar 

  82. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  83. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. 14th International Joint Conference on Artificial Intelligence Vol. 2 1137–1143 (Morgan Kaufmann, 1995).

  84. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA FINESST Award 80NSSC19K134 to E.W. and J.L., NSF Awards OPP-1722572/OPP-2051888 to A.L. and NSF awards RISE-1927872/ICER-1927723/ICER-2052107 to A.L. and C.W.

Author information

Authors and Affiliations

Authors

Contributions

E.W. developed the concept and designed the analysis with assistance from A.L., M.L. and J.L. E.W. performed the main-text analyses. J.C. and C.W. assisted with validation analyses. E.W. wrote the manuscript with assistance from J.L. and all authors edited the manuscript.

Corresponding author

Correspondence to Elizabeth E. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Rebecca Finger-Higgens, J. (Ko) van Huissteden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Trends in annual air temperature and fall rain across the study region.

Trends are derived from the ERA5-Land reanalysis dataset30 for 2000–2021 (annual air temperature) and 1999–2020 (autumn rain). Generated using Copernicus Climate Change Service Information [2022].

Source data

Extended Data Fig. 2 Partial dependence plots for the effect of annual temperature trends and autumn rain trends on surface water trends.

These plots show that after controlling for variation in other predictors, increasing annual temperature and increasing autumn rain both lead to decreases in surface water at a given location. The line shows the partial dependence relationships, and the histogram shows the frequency distribution of 12 km pixels.

Source data

Extended Data Fig. 3 Predictor variables, other than changes in annual air temperature and autumn rain, contributing the most to surface water trends, as determined using Shapley values.

Pixels in this figure are marked as ‘other’ in Fig. 4.

Source data

Extended Data Fig. 4 Circumpolar distribution of continuous and discontinuous permafrost extent, ground ice content, thermokarst lake coverage, and thermokarst wetland coverage.

‘High to very high’ and ‘low to moderate’ indicate fractional coverage of wetlands and lakes (high to very high: 30–100%; low to moderate: 1–30%). Permafrost extent and ground ice content is from ref. 67 and thermokarst lake and wetland coverage is from ref. 66.

Source data

Extended Data Fig. 5 Change in the average July superfine water index (yr-1) from 2000 to 2021 across the entire northern permafrost zone.

As in Fig. 1, but trends are calculated over the entire northern permafrost region (lake-rich and non-lake-rich areas of the continuous and discontinuous permafrost north of 50° N) rather than only in lake-rich regions.

Source data

Extended Data Fig. 6 Relative importance of predictor variables in explaining surface water trends across the entire northern permafrost zone.

As in Fig. 3, but relative importance is calculated based on trends and geospatial data from across the entire northern permafrost region (lake-rich and non-lake-rich areas of the continuous and discontinuous permafrost north of 50° N) rather than only in lake-rich regions.

Source data

Supplementary information

Supplementary Information

SWI validation analysis, Supplementary Figs. 1–3 and Tables 1–3.

Source data

Source Data Fig. 1

Graphical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Graphical source data.

Source Data Fig. 4

Shapley values for each variable at each pixel.

Source Data Extended Data Fig. 1

Graphical source data (band 1, autumn temperature; band 2, annual temperature).

Source Data Extended Data Fig. 2

Graphical source data.

Source Data Extended Data Fig. 3

Shapley values for each variable at each pixel.

Source Data Extended Data Fig. 4

Graphical source data.

Source Data Extended Data Fig. 5

Graphical source data.

Source Data Extended Data Fig. 6

Graphical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, E.E., Liljedahl, A.K., Cordeiro, J.A. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Chang. 12, 841–846 (2022). https://doi.org/10.1038/s41558-022-01455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01455-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene