Abstract

The Paris Agreement—which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C—has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850–1,150 GtCO2 during 2016–2100, despite carbon prices of US$130–420 per tCO2 by 2030. Thus, 640–950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160–330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

  2. 2.

    Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, 1–5 (2008).

  3. 3.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

  4. 4.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  5. 5.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

  6. 6.

    Jackson, R. B. et al. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 12, 110202 (2017).

  7. 7.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

  8. 8.

    Iyer, G. C. et al. The contribution of Paris to limit global warming to 2 °C. Environ. Res. Lett. 10, 125002 (2015).

  9. 9.

    Fujimori, S. et al. Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus 5, 1620 (2016).

  10. 10.

    Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, e15748 (2017).

  11. 11.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

  12. 12.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

  13. 13.

    Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there-energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369–382 (2014).

  14. 14.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

  15. 15.

    Riahi, K. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

  16. 16.

    Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).

  17. 17.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

  18. 18.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

  19. 19.

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

  20. 20.

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carboncycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

  21. 21.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  22. 22.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

  23. 23.

    Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

  24. 24.

    Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–59 (2012).

  25. 25.

    Luderer, G. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim. Change 123, 427–441 (2014).

  26. 26.

    Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations (International Energy Agency, 2017).

  27. 27.

    van Vuuren, D. P. et al. Carbon budgets and energy transition pathways. Environ. Res. Lett. 11, 075002 (2016).

  28. 28.

    Edelenbosch, O. Y. et al. Decomposing passenger transport futures: comparing results of global integrated assessment models. Transp. Res. D Transp. Environ. 55, 281–293 (2017).

  29. 29.

    Edelenbosch, O. Y. et al. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy 122, 701–710 (2017).

  30. 30.

    Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2016).

  31. 31.

    Kermeli, K., Graus, W. H. J. & Worrell, E. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector. Energy Effic. 7, 987–1011 (2014).

  32. 32.

    Sugiyama, M. Climate change mitigation and electrification. Energy Policy 44, 464–468 (2012).

  33. 33.

    Global Electric Vehicle Outlook 2016 (International Energy Agency, 2016).

  34. 34.

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

  35. 35.

    Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

  36. 36.

    Fischedick, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2014).

  37. 37.

    Banerjee, R. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 8 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).

  38. 38.

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

  39. 39.

    Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2014).

  40. 40.

    Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

  41. 41.

    Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

  42. 42.

    Luderer, G., Bertram, C., Calvin, K., De Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Clim. Change 136, 127–140 (2016).

  43. 43.

    Clarke, L. et al. International climate policy architectures: overview of the EMF-22 International Scenarios. Energy Econ. 31, S64–S81 (2009).

  44. 44.

    Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

  45. 45.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

  46. 46.

    Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 17, 1–25 (2017).

  47. 47.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

  48. 48.

    Rose, S. K. et al. Bioenergy in energy transformation and climate management. Clim. Change 123, 477–493 (2013).

  49. 49.

    den Boer, E., Aarnink, S., Kleiner, F. & Pagenkopf, J. Zero Emissions Trucks: An Overview of State-of-the-art Technologies and Their Potential (CE Delft, 2013).

  50. 50.

    Kuramochi, T., Ram¡rez, A., Turkenburg, W. & Faaij, A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 38, 87–112 (2012).

  51. 51.

    Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Thesis, Univ. Kassel (2009).

  52. 52.

    Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the economics of climate change. Environ. Resour. Econ. 62, 329–357 (2015).

  53. 53.

    Luderer, G. et al. Deep Decarbonisation Towards 1.5°C2°C Stabilisation: Policy Findings from the ADVANCE Project (ADVANCE consortium, Potsdam Institute for Climate Impact Research, 2016).

  54. 54.

    Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

  55. 55.

    Luderer, G. et al. Assessment of wind and solar power in global low-carbon energy scenarios: an introduction. Energy Econ. 64, 542–551 (2017).

  56. 56.

    Vrontisi, Z. et al. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environ. Res. Lett. 13, 044039 (2018).

  57. 57.

    Fujimori, S., Masui, T. & Matsuoka, Y. Development of a global computable general equilibrium model coupled with detailed energy end-use technology . Appl. Energy 128, 296–306 (2014).

  58. 58.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [Basic] Manual Discussion Paper No. 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012).

  59. 59.

    Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 6, 685–699 (2014).

  60. 60.

    Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).

  61. 61.

    McJeon, H. et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482–485 (2014).

  62. 62.

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

  63. 63.

    Edmonds, J., Clarke, J., Dooley, J., Kim, S. H. & Smith, S. J.. Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Econ. 26, 517–537 (2004).

  64. 64.

    Sands, R. D. & Leimbach, M. Modeling agriculture and land use in an integrated assessment framework. Clim. Change 56, 185–210 (2003).

  65. 65.

    Edmonds, J. & Reilly, J. Global energy and CO2 to the year 2050. Energy J. 4, 21–37 (1983).

  66. 66.

    Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J. & Wise, M. The objECTS framework for integrated assessment: hybrid modeling of transportation. Energy J. 27, 63–91 (2006).

  67. 67.

    Stehfest, E., van Vuuren, D., Bouwman, L. & Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (Netherlands Environmental Assessment Agency (PBL), 2014).

  68. 68.

    Krey, V. et al. MESSAGE-GLOBIOM 1.0 Documentation (International Institute for Applied Systems Analysis, 2016).

  69. 69.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

  70. 70.

    Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).

  71. 71.

    Riahi, K. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 17 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).

  72. 72.

    Messner, S. & Strubegger, M. User’s Guide for MESSAGE III (International Institute for Applied Systems Analysis, 1995).

  73. 73.

    Messner, S. & Schrattenholzer, L. MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25, 267–282 (2000).

  74. 74.

    Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

  75. 75.

    Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

  76. 76.

    Kindermann, G. E., Obersteiner, M., Rametsteiner, E. & McCallum, I. Predicting the deforestation-trend under different carbon-prices. Carbon Balance Manag. 1, 15 (2006).

  77. 77.

    Gusti, M. An algorithm for simulation of forest management decisions in the global forest model. Shtuchn. Intel. 4, 45–49 (2010).

  78. 78.

    Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

  79. 79.

    Rao, S. et al. Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23, 1122–1130 (2013).

  80. 80.

    Global Mitigation of Non-CO 2 Greenhouse Gases: 2010–2030 Report EPA-430-R-13-011 (EPA, 2013).

  81. 81.

    Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).

  82. 82.

    Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

  83. 83.

    Strefler, J., Luderer, G., Aboumahboub, T. & Kriegler, E. Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Clim. Change 125, 319–331 (2014).

  84. 84.

    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. WITCH-a world induced technical change hybrid model. Energy J. 27, 13–37 (2006).

  85. 85.

    Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways Working Paper No. 42.2016 (Fondazione Eni Enrico Mattei, 2016).

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Programme FP7/2007-2013 under grant agreement no. 308329 (ADVANCE) as well as the Horizon 2020 Research and Innovation Programme under grant agreement no. 642147 (CD-LINKS). G.L., R.C.P. and M.P. were also supported by ENavi, one of the four Kopernikus Projects for the Energy Transition funded by the German Federal Ministry of Education and Research (BMBF). J.R. acknowledges the support of the Oxford Martin School Visiting Fellowship programme. The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

Author information

Affiliations

  1. Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany

    • Gunnar Luderer
    • , Christoph Bertram
    • , Robert C. Pietzcker
    • , Michaja Pehl
    •  & Elmar Kriegler
  2. Joint Research Centre of the European Commission, Edificio Expo, Sevilla, Spain

    • Zoi Vrontisi
    • , Kimon Keramidas
    • , Alban Kitous
    •  & Bert Saveyn
  3. School of Electrical and Computer Engineering, E3MLab, National Technical University of Athens, Zografou, Athens, Greece

    • Zoi Vrontisi
  4. PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands

    • Oreane Y. Edelenbosch
    • , Harmen Sytze De Boer
    •  & Detlef P. Van Vuuren
  5. Copernicus Institute for Sustainable Development, Utrecht University, Utrecht, the Netherlands

    • Oreane Y. Edelenbosch
    • , Harmen Sytze De Boer
    •  & Detlef P. Van Vuuren
  6. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

    • Joeri Rogelj
    • , Oliver Fricko
    • , Petr Havlík
    • , Volker Krey
    •  & Keywan Riahi
  7. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

    • Joeri Rogelj
  8. Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK

    • Joeri Rogelj
  9. Grantham Institute, Imperial College London, London, UK

    • Joeri Rogelj
  10. Fondazione Eni Enrico Mattei, Corso Magenta, Milan, Italy

    • Laurent Drouet
    • , Johannes Emmerling
    •  & Massimo Tavoni
  11. Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Corso Magenta, Milan, Italy

    • Laurent Drouet
    • , Johannes Emmerling
    •  & Massimo Tavoni
  12. National Institute for Environmental Studies, Tsukuba, Japan

    • Shinichiro Fujimori
  13. Department of Environmental Engineering, Kyoto University, Kyoto University Katsura Campus, Nishikyo-ku, Kyoto, Japan

    • Shinichiro Fujimori
  14. Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA

    • Gokul Iyer
  15. Politecnico di Milano, Department of Management, Economics and Industrial Engineering, Milan, Italy

    • Massimo Tavoni

Authors

  1. Search for Gunnar Luderer in:

  2. Search for Zoi Vrontisi in:

  3. Search for Christoph Bertram in:

  4. Search for Oreane Y. Edelenbosch in:

  5. Search for Robert C. Pietzcker in:

  6. Search for Joeri Rogelj in:

  7. Search for Harmen Sytze De Boer in:

  8. Search for Laurent Drouet in:

  9. Search for Johannes Emmerling in:

  10. Search for Oliver Fricko in:

  11. Search for Shinichiro Fujimori in:

  12. Search for Petr Havlík in:

  13. Search for Gokul Iyer in:

  14. Search for Kimon Keramidas in:

  15. Search for Alban Kitous in:

  16. Search for Michaja Pehl in:

  17. Search for Volker Krey in:

  18. Search for Keywan Riahi in:

  19. Search for Bert Saveyn in:

  20. Search for Massimo Tavoni in:

  21. Search for Detlef P. Van Vuuren in:

  22. Search for Elmar Kriegler in:

Contributions

G.L., Z.V., V.K., E.K., K.R., B.S. and D.P.V.V. designed the research and scenarios; C.B., O.Y.E., R.C.P., H.S.D.B., L.D., J.E., O.F., S.F., P.H., G.I., A.K., K.K. and M.P. performed scenario modelling work; J.R. performed climate analysis; G.L. performed scenario data analysis in collaboration with C.B. and M.P.; G.L. created the figures and wrote the paper with inputs and feedback from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Gunnar Luderer.

Supplementary information

  1. Supplementary Information

    Supplementary Text 1–3, Supplementary Figures 1–18, Supplementary Tables 1–3, Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0198-6