Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular-level mechanistic framework for interfacial proton-coupled electron transfer kinetics

Abstract

Electrochemical proton-coupled electron transfer (PCET) reactions can proceed via an outer-sphere electron transfer to solution (OS-PCET) or through an inner-sphere mechanism by interfacial polarization of surface-bound active sites (I-PCET). Although OS-PCET has been extensively studied with molecular insight, the inherent heterogeneity of surfaces impedes molecular-level understanding of I-PCET. Herein we employ graphite-conjugated carboxylic acids (GC-COOH) as molecularly well-defined hosts of I-PCET to isolate the intrinsic kinetics of I-PCET. We measure I-PCET rates across the entire pH range, uncovering a V-shaped pH-dependence that lacks the pH-independent regions characteristic of OS-PCET. Accordingly, we develop a mechanistic model for I-PCET that invokes concerted PCET involving hydronium/water or water/hydroxide donor/acceptor pairs, capturing the entire dataset with only four adjustable parameters. We find that I-PCET is fourfold faster with hydronium/water than water/hydroxide, while both reactions display similarly high charge transfer coefficients, indicating late proton transfer transition states. These studies highlight the key mechanistic distinctions between I-PCET and OS-PCET, providing a framework for understanding and modelling more complex multistep I-PCET reactions critical to energy conversion and catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between outer-sphere and interfacial proton-coupled electron transfer.
Fig. 2: Synthesis, structure and reactivity of GC-COOH.
Fig. 3: Representative equilibrium cyclic voltammogram of GC-COOH and pH dependence of I-PCET thermochemistry.
Fig. 4: Fast-scan-rate cyclic voltammogram of GC-COOH and representative trumpet plots for GC-COOH.
Fig. 5: Apparent rate constant as a function of pH.
Fig. 6: Fitting model to experimental data.

Similar content being viewed by others

Data availability

All data used to support the claims of the main text have been included with this manuscript as a .zip file. Data used to support claims discussed in the Supporting Information can be made available on reasonable request. Source Data are provided with this paper.

Code availability

All scripts used in CV simulation and data fitting are included in a compressed .zip file in the Supplementary Code section.

References

  1. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  PubMed  Google Scholar 

  2. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. 122, 10599–10650 (2022).

    CAS  PubMed  Google Scholar 

  4. Reece, S. Y. & Nocera, D. G. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mora, S. J. et al. Proton-coupled electron transfer in artificial photosynthetic systems. Acc. Chem. Res. 51, 445–453 (2018).

    CAS  PubMed  Google Scholar 

  6. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schreier, M., Yoon, Y., Jackson, M. N. & Surendranath, Y. Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem. Int. Ed. 57, 10221–10225 (2018).

    CAS  Google Scholar 

  8. Nocera, D. G. Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022).

    CAS  PubMed  Google Scholar 

  9. Singh, C. & Paul, A. Physisorbed hydroquinone on activated charcoal as a supercapacitor: an application of proton-coupled electron transfer. J. Phys. Chem. C 119, 11382–11390 (2015).

    CAS  Google Scholar 

  10. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  11. Cobb, S. J., Ayres, Z. J., Newton, M. E. & Macpherson, J. V. Deconvoluting surface-bound quinone proton coupled electron transfer in unbuffered solutions: toward a universal voltammetric pH electrode. J. Am. Chem. Soc. 141, 1035–1044 (2019).

    CAS  PubMed  Google Scholar 

  12. Ryu, J., Wuttig, A. & Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-Faradaic reaction. Angew. Chem. Int. Ed. 57, 9300–9304 (2018).

    CAS  Google Scholar 

  13. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal−liquid interfaces. ACS Cent. Sci. 7, 1045–1055 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Howland, W. C., Gerken, J. B., Stahl, S. S. & Surendranath, Y. Thermal hydroquinone oxidation on Co/N-doped carbon proceeds by a band-mediated electrochemical mechanism. J. Am. Chem. Soc. 144, 11253–11262 (2022).

    CAS  PubMed  Google Scholar 

  15. Costentin, C., Robert, M., Savéant, J.-M. & Teillout, A.-L. Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: electrochemistry of [OsII(bpy)2 py(OH 2)]2+ in water. Proc. Natl Acad. Sci. USA 106, 11829–11836 (2009).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Madhiri, N. & Finklea, H. O. Potential-, pH-, and isotope-dependence of proton-coupled electron transfer of an osmium aquo complex attached to an electrode. Langmuir 22, 10643–10651 (2006).

    CAS  PubMed  Google Scholar 

  17. Laviron, E. Theoretical study of a 1e, 1H+ surface electrochemical reaction (four-member square scheme) when the protonation reactions are at equilibrium. J. Electroanal. Chem. Interfacial Electrochem. 109, 57–67 (1980).

    CAS  Google Scholar 

  18. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    CAS  PubMed  Google Scholar 

  20. Savéant, J. M. & Costentin, C. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (Wiley, 2019).

  21. Jackson, M. N., Pegis, M. L. & Surendranath, Y. Graphite-conjugated acids reveal a molecular framework for proton-coupled electron transfer at electrode surfaces. ACS Cent. Sci. 5, 831–841 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, M. N., Jung, O., Lamotte, H.C., & Surendranath, Y. Donor-dependent promotion of interfacial proton-coupled electron transfer in aqueous electrocatalysis ACS Catalysis 9, 3737–3743 (2019).

  23. Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer J. Am. Chem. Soc. 138, 3228–3234 (2016).

  24. Kaminsky, C. J., Weng, S., Wright, J. et al. Adsorbed cobalt porphyrins act like metal surfaces in electrocatalysis. Nat. Catal. 5, 430–442 (2022).

  25. Hutchison, P., Kaminsky, C. J., Surendranath, Y. & Hammes-Schiffer, S. ACS Central Science 9, 927–936 (2023).

  26. Spiro, M. Interfacial kinetics in solution. Linear free-energy relationships applicable to heterogeneously catalysed reactions in solution. Faraday Discuss. Chem. Soc. 77, 275–286 (1984).

    Google Scholar 

  27. Brønsted, J. N. & Pedersen, K. Die katalytische zersetzung des nitramids und ihre physikalisch-chemische bedeutung. Z. Für Phys. Chem. 108U, 185–235 (1924).

    Google Scholar 

  28. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 1–7 (2017).

    Google Scholar 

  29. Kuo, D.-Y., Lu, X., Hu, B., Abruña, H. D. & Suntivich, J. Rate and mechanism of electrochemical formation of surface-bound hydrogen on Pt(111) single crystals. J. Phys. Chem. Lett. 13, 6383–6390 (2022).

    CAS  PubMed  Google Scholar 

  30. Rebollar, L. et al. Beyond adsorption’ descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    CAS  Google Scholar 

  31. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  32. Su, L. et al. Electric-double-layer origin of the kinetic pH effect of hydrogen electrocatalysis revealed by a universal hydroxide adsorption-dependent inflection-point behavior. J. Am. Chem. Soc. 145, 12051–12058 (2023).

    CAS  PubMed  Google Scholar 

  33. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 6, 476–493 (2022).

    CAS  Google Scholar 

  34. Prats, H. & Chan, K. The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. 23, 27150–27158 (2021).

    CAS  PubMed  Google Scholar 

  35. Li, M. et al. Platinum–water interaction induced interfacial water orientation that governs the pH-dependent hydrogen oxidation reaction. J. Phys. Chem. Lett. 13, 10550–10557 (2022).

    CAS  PubMed  Google Scholar 

  36. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    CAS  Google Scholar 

  37. Lamoureux, P. S., Singh, A. R. & Chan, K. pH effects on hydrogen evolution and oxidation over Pt(111): insights from first-principles. ACS Catal. 9, 6194–6201 (2019).

    CAS  Google Scholar 

  38. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    CAS  ADS  PubMed  Google Scholar 

  39. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    CAS  PubMed  Google Scholar 

  40. Warburton, R. E. et al. Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids. J. Am. Chem. Soc. 142, 20855–20864 (2020).

    CAS  PubMed  Google Scholar 

  41. Wise, C. F. & Mayer, J. M. Electrochemically determined O–H bond dissociation free energies of NiO electrodes predict proton-coupled electron transfer reactivity. J. Am. Chem. Soc. 141, 14971–14975 (2019).

    CAS  PubMed  Google Scholar 

  42. Gum, W. F. & Joullié, M. M. Structure vs. reactivity in quinoxalinecarboxylic acids and esters. J. Org. Chem. 30, 3982–3985 (1965).

    CAS  Google Scholar 

  43. Armstrong, F. A. et al. Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Discuss. 116, 191–203 (2000).

    CAS  ADS  Google Scholar 

  44. Hirst, J. & Armstrong, F. A. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange. Anal. Chem. 70, 5062–5071 (1998).

    CAS  PubMed  Google Scholar 

  45. Feldberg, S. W. & Rubinstein, I. Unusual quasi-reversibility (UQR) or apparent non-kinetic hysteresis in cyclic voltammetry: an elaboration upon the implications of N-shaped free energy relationships as explanation. J. Electroanal. Chem. Interfacial Electrochem. 240, 1–15 (1988).

    CAS  Google Scholar 

  46. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, 19–28 (1979).

    CAS  Google Scholar 

  47. Costentin, C., Robert, M., Savéant, J.-M. & Teillout, A.-L. Concerted and stepwise proton-coupled electron transfers in aquo/hydroxo complex couples in water:oxidative electrochemistry of [OsII(bpy)2(py)(OH2)]2+. ChemPhysChem 10, 191–198 (2009).

    CAS  PubMed  Google Scholar 

  48. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O Interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Markle, T. F., Darcy, J. W. & Mayer, J. M. A new strategy to efficiently cleave and form C–H bonds using proton-coupled electron transfer. Sci. Adv. 4, eaat5776 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  50. Bourrez, M., Steinmetz, R., Ott, S., Gloaguen, F. & Hammarström, L. Concerted proton-coupled electron transfer from a metal–hydride complex. Nat. Chem. 7, 140–145 (2015).

    CAS  Google Scholar 

  51. Morris, W. D. & Mayer, J. M. Separating proton and electron transfer effects in three-component concerted proton-coupled electron transfer reactions. J. Am. Chem. Soc. 139, 10312–10319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    CAS  PubMed  Google Scholar 

  53. Kresge, A. J. The Brønsted relation—recent developments. Chem. Soc. Rev. 2, 475–503 (1973).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge C. Costentin for fruitful discussions. We thank the entire Surendranath laboratory for their support and scientific discussions, with particular acknowledgment towards B. Tang, N. Razdan, S. Weng, A. Chu, M. Pegis and H. Wang for their helpful discussions. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, under award no. DE-SC0020973 (N.B.L. and Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

N.B.L. and Y.S. conceived the research and developed experiments. N.B.L conducted all experiments and data analysis. N.B.L, Y.S., R.P.B. and A.V.S. developed I-PCET kinetic model. N.B.L., R.P.B. and K.S.W developed scripts for data simulation and fitting. N.B.L. and Y.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Zhongbin Zhuang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Datasets 1–6, Figs. 1–15, and Tables 1 and 2.

Supplementary Data 1

A .zip file containing tabulated source data for Figs. 1–6, as well as raw CVs used to create Pourbaix Diagram in Fig. 3 and to create all Trumpet plots comprising the data in Figs. 4–6.

Supplementary Code 1

MATLAB scripts used to simulate and fit trumpet plots.

Source data

Source Data Fig. 3

Panel a: slow scan rate cyclic voltammogram of GC-COOH in pH 14. Panel b: equilibrium potential of GC-COOH I-PCET as a function of solution pH.

Source Data Fig. 4

Panel a: fast-scan-rate cyclic voltammogram of GC-COOH in pH 14. Panel b: trumpet plots for GC-COOH I-PCET at pHs 0, 7 and 14, with simulated fits.

Source Data Fig. 5

Apparent rate constant data of I-PCET at GC-COOH extracted from trumpet plots as a function of pH.

Source Data Fig. 6

Apparent rate constant data of I-PCET at GC-COOH extracted from trumpet plots as a function of pH with fits from mechanistic model for the ‘acid’ and ‘base’ reactions and their overall sum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, N.B., Bisbey, R.P., Westendorff, K.S. et al. A molecular-level mechanistic framework for interfacial proton-coupled electron transfer kinetics. Nat. Chem. 16, 343–352 (2024). https://doi.org/10.1038/s41557-023-01400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01400-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing