Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis

Abstract

Interfacial electrocatalysis involves elementary chemical and charge transfer reaction steps. For the hydrogen evolution reaction (HER), the applied overpotential can be partitioned into a charge transfer overpotential, which drives proton-coupled electron transfer, and a chemical overpotential arising from increasing surface H activity. However, typical experiments report on the aggregate rate–overpotential profile, with no information about the relative contributions from these two components. Herein, we employ a Pd membrane double cell to spatially isolate charge transfer and chemical reaction steps in HER catalysis, deconvoluting their overpotential contribution under different reaction conditions. We analyse how pH and the introduction of poisons and promoters affect each component, and find that for a given H2 release rate, only the charge transfer overpotential is affected by reaction conditions. These findings suggest that reaction-condition-dependent HER efficiencies are driven predominantly by changes to the charge transfer kinetics rather than the chemical reactivity of surface H.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogen electrocatalysis on electrode surfaces is composed of both chemical and charge transfer overpotential components.
Fig. 2: Illustration of the electrochemical double cell configuration.
Fig. 3: Polarization of the H-pumping interface affects the OCP behaviour of the analytical interface.
Fig. 4: Rate scaling of H2 release with chemical overpotential is pH-independent.
Fig. 5: The rate scaling of H2 release with chemical overpotential is unaffected by added CO or Ni(OH)2.
Fig. 6: The charge transfer overpotential component is pH-dependent.
Fig. 7: The charge transfer overpotential component is affected by added CO and Ni(OH)2.
Fig. 8: Contributions of chemical and charge transfer overpotentials for hydrogen catalysis under different reaction conditions.

Similar content being viewed by others

Data availability

The source data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  2. Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tilak, B. V. & Conway, B. E. Analytical relations between reaction order and Tafel slope derivatives for electrocatalytic reactions involving chemisorbed intermediates. Electrochim. Acta 37, 51–63 (1992).

    Article  CAS  Google Scholar 

  4. Conway, B. E. & Liu, T. C. Behaviour of surface intermediate states in anodic O2 evolution electrocatalysis at Co3O4 on Ni and Ti substrates. Ber. Bunsenges. Phys. Chem. 91, 461–469 (1987).

    Article  CAS  Google Scholar 

  5. Bockris, J. O. & Potter, E. C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99, 169–186 (1952).

    Article  CAS  Google Scholar 

  6. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Enyo, M. & Maoka, T. The overpotential components on the palladium hydrogen electrode. J. Electroanal. Chem. Interfacial Electrochem. 108, 277–292 (1980).

    Article  CAS  Google Scholar 

  8. Enyo, M. & Maoka, T. The hydrogen electrode reaction mechanism on palladium and its relevance to hydrogen sorption. Surf. Technol. 4, 277–290 (1976).

    Article  CAS  Google Scholar 

  9. Green, J. A. S. & Lewis, F. A. Overvoltage component at palladized cathodes of palladium and palladium alloys prior to and during bubble evolution. Trans. Faraday Soc. 60, 2234–2243 (1964).

    Article  CAS  Google Scholar 

  10. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, 3 (2016).

    Article  Google Scholar 

  12. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  13. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  14. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 6, 476–493 (2022).

    Article  CAS  Google Scholar 

  15. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  16. Jackson, M. N., Jung, O., Lamotte, H. C. & Surendranath, Y. Donor-dependent promotion of interfacial proton-coupled electron transfer in aqueous electrocatalysis. ACS Catal. 9, 3737–3743 (2019).

    Article  CAS  Google Scholar 

  17. Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).

    Article  CAS  Google Scholar 

  18. Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  22. Leiva, E. P. M., Santos, E. & Iwasita, T. The effect of adsorbed carbon monoxide on hydrogen adsorption and hydrogen evolution on platinum. J. Electroanal. Chem. Interfacial Electrochem. 215, 357–367 (1986).

    Article  CAS  Google Scholar 

  23. Ji, S. G., Kim, H., Park, C., Kim, W. & Choi, C. H. Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes. ACS Catal. 10, 10773–10783 (2020).

    Article  CAS  Google Scholar 

  24. Rodriguez, P., Feliu, J. M. & Koper, M. T. M. Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochem. Commun. 11, 1105–1108 (2009).

    Article  CAS  Google Scholar 

  25. Zeradjanin, A. R., Grote, J.-P., Polymeros, G. & Mayrhofer, K. J. J. A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28, 2256–2269 (2016).

    Article  CAS  Google Scholar 

  26. Kunimatsu, K., Senzaki, T., Samjeské, G., Tsushima, M. & Osawa, M. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 52, 5715–5724 (2007).

    Article  CAS  Google Scholar 

  27. Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article  PubMed  Google Scholar 

  28. Harrington, D. A. & Conway, B. E. Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates: analysis for the case of the H2 evolution reaction. J. Electroanal. Chem. Interfacial Electrochem. 221, 1–21 (1987).

    Article  CAS  Google Scholar 

  29. Conway, B. E. & Jerkiewicz, G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45, 4075–4083 (2000).

    Article  CAS  Google Scholar 

  30. Conway, B. E. & Bai, L. State of adsorption and coverage by overpotential-deposited H in the H2 evolution reaction at Au and Pt. Electrochim. Acta 31, 1013–1024 (1986).

    Article  CAS  Google Scholar 

  31. Maoka, T. & Enyo, M. Overpotential decay transients and the reaction mechanism on the Pd-H2 electrode. Surf. Technol. 8, 441–450 (1979).

    Article  CAS  Google Scholar 

  32. Devanathan, M. A. V., Stachurski, Z. & Tompkins, F. C. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. Lond. A Math. Phys. Sci. 270, 90–102 (1962).

    CAS  Google Scholar 

  33. Ward, T. L. & Dao, T. Model of hydrogen permeation behavior in palladium membranes. J. Membr. Sci. 153, 211–231 (1999).

    Article  CAS  Google Scholar 

  34. Yun, S. & Ted Oyama, S. Correlations in palladium membranes for hydrogen separation: a review. J. Membr. Sci. 375, 28–45 (2011).

    Article  CAS  Google Scholar 

  35. Rahimpour, M. R., Samimi, F., Babapoor, A., Tohidian, T. & Mohebi, S. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem. Eng. Process. Process Intensif. 121, 24–49 (2017).

    Article  CAS  Google Scholar 

  36. Delima, R. S., Sherbo, R. S., Dvorak, D. J., Kurimoto, A. & Berlinguette, C. P. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation. J. Mater. Chem. A 7, 26586–26595 (2019).

    Article  CAS  Google Scholar 

  37. Jansonius, R. P. et al. Hydrogenation without H2 using a palladium membrane flow cell. Cell Rep. Phys. Sci. 1, 100105 (2020).

    Article  Google Scholar 

  38. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  39. Kurimoto, A. et al. Physical separation of H2 activation from hydrogenation chemistry reveals the specific role of secondary metal catalysts. Angew. Chem. Int. Ed. 60, 11937–11942 (2021).

    Article  CAS  Google Scholar 

  40. Delima, R. S. et al. Selective hydrogenation of furfural using a membrane reactor. Energy Environ. Sci. 15, 215–224 (2022).

    Article  CAS  Google Scholar 

  41. Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  43. Yoshitake, H., Kikkawa, T. & Ota, K. Isotopic product distributions of CO2 electrochemical reduction on a D flowing-out Pd surface in protonic solution and reactivities of ‘subsurface’ hydrogen. J. Electroanal. Chem. 390, 91–97 (1995).

    Article  Google Scholar 

  44. Rock, P. A. Electrochemical double cells. J. Chem. Educ. 52, 787 (1975).

    Article  CAS  Google Scholar 

  45. Flanagan, T. B. & Oates, W. A. The palladium-hydrogen system. Annu. Rev. Mater. Sci. 21, 269–304 (1991).

    Article  CAS  Google Scholar 

  46. Tsirlina, G. A., Levi, M. D., Petrii, O. A. & Aurbach, D. Comparison of equilibrium electrochemical behavior of PdHx and LixMn2O4 intercalation electrodes in terms of sorption isotherms. Electrochim. Acta 46, 4141–4149 (2001).

    Article  CAS  Google Scholar 

  47. Liu, S., Mu, X., Duan, H., Chen, C. & Zhang, H. Pd nanoparticle assemblies as efficient catalysts for the hydrogen evolution and oxygen reduction reactions. Eur. J. Inorg. Chem. 2017, 535–539 (2017).

    Article  CAS  Google Scholar 

  48. Thrush, K. A. & White, J. M. Carbon monoxide and hydrogen coadsorption on polycrystalline platinum. Appl. Surf. Sci. 24, 108–120 (1985).

    Article  CAS  Google Scholar 

  49. Roman, T., Nakanishi, H. & Kasai, H. Coadsorbed H and CO interaction on platinum. Phys. Chem. Chem. Phys. 10, 6052–6057 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Couble, J. & Bianchi, D. Experimental microkinetic approach of the CO/H2 reaction on Pt/Al2O3 using the Temkin formalism. 1. Competitive chemisorption between adsorbed CO and hydrogen species in the absence of reaction. J. Catal. 352, 672–685 (2017).

    Article  CAS  Google Scholar 

  51. Palazov, A., Kadinov, G., Bonev, C. H. & Shopov, D. Infrared spectroscopic study of the interaction between carbon monoxide and hydrogen on supported palladium. J. Catal. 74, 44–54 (1982).

    Article  CAS  Google Scholar 

  52. Yu, W.-Y., Mullen, G. M. & Mullins, C. B. Interactions of hydrogen and carbon monoxide on Pd–Au bimetallic surfaces. J. Phys. Chem. C 118, 2129–2137 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge C. Costentin, M. Koper and J. Mayer for discussions. The authors thank the entire Surendranath Lab for their support and scientific discussions, with particular acknowledgement towards H. Dinh, A. Chu, W. Howland, T. Marshall-Roth and H. Wang for their helpful discussions and mentorship. The authors would also like to thank C. Kaminsky and J. Ryu for their insights and mentorship. This research was supported by the National Science Foundation, under award number CHE-2102669.

Author information

Authors and Affiliations

Authors

Contributions

B.Y.T., R.P.B. and Y.S. conceived the research and developed experiments. B.Y.T. conducted the majority of the experiments. R.P.B., K.M.L. and W.L.T. contributed to data collection. B.Y.T. and Y.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Curtis Berlinguette and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–4 and Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B.Y., Bisbey, R.P., Lodaya, K.M. et al. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat Catal 6, 339–350 (2023). https://doi.org/10.1038/s41929-023-00943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00943-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing