Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Specific β-glucans in chain conformations and their biological functions

Abstract

The structures and functions of polysaccharides are not fully understood by the scientific community due to their complexity and the limitations of characterization methods. β-(1,3)-D-glucans with or without β-(1,6)-linked glucopyranans as branches (β-glucans), which are important polysaccharides, are widely involved in various biological activities. Moreover, β-glucans exhibit a strong ability to self-assemble into diverse nanocomposite biomaterials, showing great promise in the diagnosis and therapeutic treatment of human diseases. Fungi are well known for their traditional edible and medical value, and β-glucans are one of the major active components in fungi. We have long been committed to the study of the structure and function of β-glucans from edible mushrooms, especially in the biological and food fields. Hence, research advances in the extraction, structural and conformational characteristics, and biological activities of β-glucans from three fungi, Auricularia auricula judae, Lentinus edodes and yeast, as typical representatives, were the focus of this review article. Additionally, as-fabricated β-glucan-derived nanocomposite biomaterials as effective therapeutic agents were addressed. This review provides a more comprehensive understanding of β-glucans and some valuable insights for research regarding other polysaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Faggio C, Pagano M, Dottore A, Genovese G, Morabito M. Evaluation of anticoagulant activity of two algal polysaccharides. Nat Prod Res. 2016;30:1934–7.

    Article  CAS  PubMed  Google Scholar 

  2. Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018;183:91–101.

    Article  CAS  Google Scholar 

  3. Peng M, Yi Y, Zhang T, Ding Y, Le J. Stereoisomers of saponins in Panax notoginseng (Sanqi): a review. Front Pharm. 2018;9:188.

    Article  Google Scholar 

  4. Li Y, Wang X, Ma X, Liu C, Wu J, Sun C. Natural polysaccharides and their derivates: a promising natural adjuvant for tumor immunotherapy. Front Pharm. 2021;12:679.

    Google Scholar 

  5. Hou C, Chen L, Yang L, Ji X. An insight into anti-inflammatory effects of natural polysaccharides. Int J Biol Macromol. 2020;153:248–55.

    Article  CAS  PubMed  Google Scholar 

  6. Wang P, Zhao S, Yang B, Wang Q, Kuang H. Anti-diabetic polysaccharides from natural sources: a review. Carbohydr Polym. 2016;148:86–97.

    Article  PubMed  Google Scholar 

  7. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci. 2019;20:5092.

    Article  CAS  PubMed Central  Google Scholar 

  8. Werz DB, Seeberger PH. Carbohydrates as the next frontier in pharmaceutical research. Chem Eur J. 2005;11:3194–206.

    Article  CAS  PubMed  Google Scholar 

  9. Meng Y, Zou S, Jiang M, Xu X, Tang B, Zhang L. Dendritic nanotubes self-assembled from stiff polysaccharides as drug and probe carriers. J Mater Chem B. 2017;5:2616–24.

    Article  CAS  PubMed  Google Scholar 

  10. Wu C, Wang X, Wang J, Zhang Z, Wang Z, Wang Y, et al. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules. Nanoscal 2017;9:9938–45.

    Article  CAS  Google Scholar 

  11. Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B. 2017;5:5690–713.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang R, Edgar KJ. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 2014;15:1079–96.

    Article  CAS  PubMed  Google Scholar 

  13. Kim HS, Park KH, Lee HK, Kim JS, Kim YG, Lee JH, et al. Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling. Int Immunopharmacol. 2016;39:71–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhong K, Liu L, Tong L, Zhong X, Wang Q, Zhou S. Rheological properties and antitumor activity of schizophyllan produced with solid-state fermentation. Int J Biol Macromol. 2013;62:13–7.

    Article  CAS  PubMed  Google Scholar 

  15. Viñarta SC, Delgado OD, Figueroa LIC, Fariña JI. Effects of thermal, alkaline and ultrasonc treatments on scleroglucan stability and flow behavior. Carbohydr Polym. 2013;94:496–50.

    Article  PubMed  Google Scholar 

  16. Zhang L, Zhang X, Zhou Q, Zhang P, Zhang M, Li X. Triple helix of β-D-glucan from Lentinus edodes in 0.5 M NaCl aqueous solution characterized by light scattering. Polym J. 2001;33:317–21.

    Article  CAS  Google Scholar 

  17. De Smet R, Demoor T, Verschuere S, Dullaers M, Ostroff GR, Leclercq G, et al. β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J Control Rel. 2013;172:671–78.

    Article  Google Scholar 

  18. Zhong K, Tong L, Liu L, Zhou X, Liu X, Zhang Q, Zhou S. Immunoregulatory and antitumor activity of schizophyllan under ultrasonic treatment. Int J Biol Macromol. 2015;80:302–8.

    Article  CAS  PubMed  Google Scholar 

  19. Farina J, Sineriz F, Molina O, Perotti N. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. rheological properties, molecular weight and conformational characteristics. Carbohydr Polym. 2001;44:41–50.

    Article  CAS  Google Scholar 

  20. Xu X, Zhang X, Zhang L, Wu C. Collapse and association of denatured lentinan in water/dimethlysulfoxide solutions. Biomacromolecules. 2004;5:1893–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Xu X, Xu J, Zhang L. Dynamic viscoelastic behavior of triple helical lentinan in water: effects of concentration and molecular weight. Polymer. 2007;48:6681–90.

    Article  CAS  Google Scholar 

  22. Miyoshi K, Uezu K, Sakurai K, Shinkai S. Proposal of a new hydrogen‐bonding form to maintain curdlan triple helix. Chem Biodivers. 2004;1:916–24.

    Article  CAS  PubMed  Google Scholar 

  23. Takeda H, Yasuoka N, Kasai N, Tokayu H. X-ray structural studies of (1→3)-β-D-glucan (curdlan). Polym J. 1978;10:365–8.

    Article  CAS  Google Scholar 

  24. Chan GC, Chan WK, Sze DM. The effects of β-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Front Immunol. 2020;11:658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bashir K, Choi J. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18:1906.

    Article  PubMed Central  Google Scholar 

  27. Kim H, Hong J, Kim Y, Han S. Stimulatory effect of β-glucans on immune cells. Immune Netw. 2011;11:191–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okamura K, Suzuki M, Chihara T, Fujiwara A, Fukuda T, Goto S, et al. Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer: a randomized controlled study. Cancer. 1986;58:865–72.

    Article  CAS  PubMed  Google Scholar 

  29. Yang P, Liang M, Zhang Y, Shen B. Clinical application of a combination therapy of lentinan, multi-electrode RFA and TACE in HCC. Adv Ther. 2008;25:787–94.

    Article  CAS  PubMed  Google Scholar 

  30. Bae AH, Numata M, Hasegawa T, Li C, Kaneko K, Sakurai K, Shinkai S. 1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds. Angew Chem Int Ed. 2005;44:2030–3.

    Article  CAS  Google Scholar 

  31. Numata M, Tamesue S, Fujisawa T, Sakurai K, Shinkai S. Beta-1,3-glucan polysaccharide (schizophyllan) acting as a one-dimensional host for creating supramolecular dye assemblies. Org Lett. 2006;8:5533–6.

    Article  CAS  PubMed  Google Scholar 

  32. Numata M, Asai M, Kaneko K, Bae AH, Hasegawa T, Sakurai K, Shinkai S. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1,3-glucans). J Am Chem Soc. 2005;127:5875–84.

    Article  CAS  PubMed  Google Scholar 

  33. Numata M, Hasegawa T, Fujisawa T, Sakurai K, Shinkai S. β-1,3-Glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures. Org Lett. 2004;6:4447–50.

    Article  CAS  PubMed  Google Scholar 

  34. Sakurai K, Shinkai S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc. 2000;122:4520–1.

    Article  CAS  Google Scholar 

  35. Kasai N, Harada T. Ultrastructure of curdlan. In: French AD, Gardner KH (eds) Fiber diffraction methods. American Chemistry Society Symposium. American chemical society; 1980. Vol. 141 p. 363–383. https://pubs.acs.org/doi/abs/10.1021/bk-1980-0141.ch024.

  36. Zhou X, Zhang X, Han S, Dou Y, Liu M, Zhang L, et al. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 2017;17:1056–64.

    Article  CAS  PubMed  Google Scholar 

  37. Xu S, Lin Y, Huang J, Li Z, Xu X, Zhang L. Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. J Mater Chem A. 2013;1:4198–206.

    Article  CAS  Google Scholar 

  38. Liu Q, Xu X, Zhang L, Yu J. Interaction between polydeoxyadenylic acid and β-glucan from Lentinus edodes. Eur Polym J. 2012;48:1329–38.

    Article  CAS  Google Scholar 

  39. Ikeda M, Hasegawa T, Numata M, Sugikawa K, Sakurai K, Fujiki M, et al. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic β-1, 3-glucan polysaccharide. J Am Chem Soc. 2007;129:3979–88.

    Article  CAS  PubMed  Google Scholar 

  40. Sanada Y, Matsuzaki T, Mochizuki S, Okobira T, Uezu K, Sakurai K. β-1,3-D-glucan schizophyllan/poly (dA) triple-helical complex in dilute solution. J Phys Chem B. 2012;116:87–94.

    Article  CAS  PubMed  Google Scholar 

  41. Mizu M, Koumoto K, Anada T, Matsumoto T, Numata M, Shinkai S, et al. A polysaccharide carrier for immunostimulatory CpG DNAs to enhance cytokine secretion. J Am Chem Soc. 2004;126:8372–3.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Q, Xu H, Cao Y, Li M, Xu X, Zhang L. Transfection efficiency and internalization of the gene carrier prepared from a triple-helical beta-glucan and polydeoxyadenylic acid in macrophage RAW264.7 cells. J Mater Chem B. 2015;3:3789–98.

    Article  CAS  PubMed  Google Scholar 

  43. Anada T, Karinaga R, Koumoto K, Mizu M, Nagasaki T, Kato Y, et al. Linear double-stranded DNA that mimics an infective tail of virus genome to enhance transfection. J Control Rel. 2005;108:529–39.

    Article  CAS  Google Scholar 

  44. Duan B, Li M, Sun Y, Zou S, Xu X. Orally delivered antisense oligodeoxyribonucleotides of TNF‐α via polysaccharide‐based nanocomposites targeting intestinal inflammation. Adv Health Mater. 2019;8:1801389.

    Article  Google Scholar 

  45. Zeng W, Zhang Z, Gao H, Jia L, Chen W. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydr Polym. 2012;89:694–700.

    Article  CAS  PubMed  Google Scholar 

  46. Li C, Mao X, Xu B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew’s ear (Auricularia auricula). Phytochem Anal. 2012;24:36–40.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Wang M. PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground Auricularia auricular. J Food Process Pres. 2017;42:e13445.

    Article  Google Scholar 

  48. Ma Y, Wang C, Zhang Q, Peng X, Feng Y, Meng X. The effects of polysaccharides from Auricularia auricula (Huaier) in adjuvant anti-gastrointestinal cancer therapy: a systematic review and network meta-analysis. Pharm Res. 2018;132:80–9.

    Article  CAS  Google Scholar 

  49. Ma Z, Wang J, Zhang L. Structure and chain conformation of beta-glucan isolated from Auricularia auricula-judae. Biopolymers. 2008;89:614–22.

    Article  CAS  PubMed  Google Scholar 

  50. Ma Z, Zhang L, Nishiyama Y, Marais MF, Mazeau K, Vignon M. The molecular structure and solution conformation of an acidic heteropolysaccharide from Auricularia auricula-judae. Biopolymers. 2010;95:217–27.

    Article  PubMed  Google Scholar 

  51. Xu S, Xu X, Zhang L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae. J Agr Food Chem. 2012;60:3498–506.

    Article  CAS  Google Scholar 

  52. Mapoung S, Umsumarng S, Semmarath W, Arjsri P, Thippraphan P, Yodkeeree S, Limtrakul P. Skin wound-healing potential of polysaccharides from medicinal mushroom Auriculariaauricula-judae (Bull.). J Fungi. 2021;7:247.

    Article  CAS  Google Scholar 

  53. Zhao R, Cheng N, Nakata PA, Zhao L, Hua Q. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Res Int. 2019;123:383–92.

    Article  CAS  PubMed  Google Scholar 

  54. Meng Y, Shi X, Cai L, Zhang S, Ding K, Nie S, et al. Triple-helix conformation of a polysaccharide determined with light scattering, AFM, and molecular dynamics simulation. Macromolecules. 2018;51:10150–9.

    Article  CAS  Google Scholar 

  55. Zhang L, Xue Q, Mo Z, Jin X. Modern research methods in polymer physics. Wuhan University Press; 2003. p. 11–76. http://www.wdp.com.cn/book/toBookInfoDetailPage.action?id=1531&flag=%20%20%20%20%20%204.

  56. Itou T, Teramoto A. Ordered structure in aqueous polysaccharide. 5. cooperative order-disorder transition in aqueous schizophyllan. Macromolecules. 1986;19:1234–40.

    Article  CAS  Google Scholar 

  57. Nardin R, Vincendon M. Isotopic exchange study of the scleroglucan chain in solution. Macromolecules. 1989;22:3551–4.

    Article  CAS  Google Scholar 

  58. Kony DB, Damm W, Stoll S, Gunsteren WF, Hünenberger PH. Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys J. 2007;93:442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S. β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Comm. 2005;35:4383–98.

    Article  Google Scholar 

  60. Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: preparation, structural features and biological activities. Carbohydr Polym. 2020;247:116750.

    Article  CAS  PubMed  Google Scholar 

  61. Liu E, Ji Y, Zhang F, Liu B, Meng XH. Review on Auricularia auricula-judae as a functional food: growth, chemical composition, and biological activities. J Agric Food Chem. 2021;69:1739–50.

    Article  CAS  PubMed  Google Scholar 

  62. Perera N, Yang FL, Chern J, Chiu HW, Hsieh CY, Li LH, et al. Carboxylic and o-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: a novel TLR4 specific immunostimulator from Auricularia auricula-judae. Chem Commun. 2018;54:6995–8.

    Article  CAS  Google Scholar 

  63. Bai HN, Wang ZY, Cui J, Yun KL, Zhang H, Liu RH, et al. Synergistic radiation protective effect of purified Auricularia auricular-judae polysaccharide (AAP IV) with grape seed procyanidins. Molecules. 2014;19:20675–94.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma Z, Wang J, Zhang L, Zhang Y, Ding K. Evaluation of water soluble β-d-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydr Polym. 2010;80:977–83.

    Article  CAS  Google Scholar 

  65. Ping Z, Xu H, Liu T, Huang J, Meng Y, Xu X, et al. Anti-hepatoma activity of the stiff branched β-D-glucan and effects of molecular weight. J Mater Chem B. 2016;4:4565–73.

    Article  CAS  PubMed  Google Scholar 

  66. Cai L, Zhou S, Wang Y, Xu X, Zhang L, Cai Z. New insights into the anti- hepatoma mechanism of triple-helix β-glucan by metabolomics profiling. Carbohydr Polym. 2021;269:118289.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang L, Xu X, Jiang G, Iijima H, Tsuchiya H. Aggregation of aeromonas gum in aqueous solution. Polym J. 1999;31:150–3.

    Article  CAS  Google Scholar 

  68. Xu X, Zhang L. Aggregation and disaggregation of Aeromonas gum in an aqueous solution under different conditions. J Polym Sci Part B: Polym Phys. 2000;38:2644–51.

    Article  CAS  Google Scholar 

  69. Zhang Y, Xu X, Zhang L. Gel formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide lentinan in water. Biopolymers. 2008;89:852–61.

    Article  CAS  PubMed  Google Scholar 

  70. Xu X, Xu J, Zhang Y, Zhang L. Rheology of triple helical lentinan in solution: steady shear viscosity and dynamic oscillatory behavior. Food Hydrocolloid. 2008;22:735–41.

    Article  CAS  Google Scholar 

  71. Zhang Y, Xu X, Zhang L. Dynamic viscoelastic behavior of triple helical lentinan in water: effect of temperature. Carbohydr Polym. 2008;73:26–34.

    Article  CAS  Google Scholar 

  72. Jin Y, Cai L, Yang Q, Luo Z, Liang L, Liang Y, et al. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-D-glucan. Carbohydr Polym. 2020;240:116329.

    Article  CAS  PubMed  Google Scholar 

  73. Suntharalingam K, Song Y, Lippard SJ. Conjugation of vitamin E analog α-TOS to Pt (IV) complexes for dual-targeting anticancer therapy. Chem Commun. 2014;50:2465–68.

    Article  CAS  Google Scholar 

  74. Gramatica P, Papa E, Luini M, Monti E, Gariboldi MB, Ravera M, et al. Antiproliferative Pt (IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling. J Biol Inorg Chem. 2010;15:1157–69.

    Article  CAS  PubMed  Google Scholar 

  75. Chen K, Cai L, Yang S, Peng S, Huang J, Xu J, et al. Zhou X. Pt (IV) prodrugs designed to embed in nanotubes of a polysaccharide for drug delivery. ACS Appl Bio Mater. 2021;4:4841–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sheng K, Wang C, Chen B, Kang M, Wang M, Liu K, et al. Recent advances in polysaccharides from Lentinus edodes (Berk.): isolation, structures and bioactivities. Food Chem. 2021;358:129883.

    Article  CAS  PubMed  Google Scholar 

  77. Xu X, Yan H, Tang J, Chen J, Zhang X. Polysaccharides in Lentinus edodes: isolation, structure, immunomodulating activity and future prospective. Crit Rev Food Sci. 2014;54:474–87.

    Article  CAS  Google Scholar 

  78. Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature. 1969;222:687–8.

    Article  CAS  PubMed  Google Scholar 

  79. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res. 1970;30:2776–81.

    CAS  PubMed  Google Scholar 

  80. Xu X, Chen P, Zhang L, Ashida H. Chain structures of glucans from Lentinus edodes and their effects on NO production from RAW 264.7 macrophages. Carbohydr Polym. 2012;87:1855–1862.

    Article  CAS  Google Scholar 

  81. Lin Y, Zeng H, Wang K, Lin H, Li P, Huang Y, et al. Micro wave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: process optimization, structure characterization and antioxidant activity. Int J Biol Macromol. 2019;136:305–15.

    Article  CAS  PubMed  Google Scholar 

  82. Tao Y, Zhang L, Yan F, Wu X. Chain conformation of water-insoluble hyperbranched polysaccharide from fungus. Biomacromolecules. 2007;8:2321–8.

    Article  CAS  PubMed  Google Scholar 

  83. Bian C, Xie N, Chen F. Preparation of bioactive water-soluble pachyman hydrolyzed from sclerotial polysaccharides of Poria cocos by hydrolase. Polym J. 2010;42:256–60.

    Article  CAS  Google Scholar 

  84. Gidley M. Quantification of the structural features of starch polysaccharides by NMR spectroscopy. Carbohydr Res. 1985;139:85–93.

    Article  CAS  Google Scholar 

  85. Liu Q, Xu X, Zhang L. Variable chain conformations of renatured β‐glucan in dimethylsulfoxide/water mixture. Biopolymers. 2012;97:988–97.

    Article  CAS  PubMed  Google Scholar 

  86. Yoshiba K, Dobashi T, Ulset AST, Christensen BE. Cooperative order-disorder transition of carboxylated schizophyllan in water–dimethylsulfoxide mixtures. J Phys Chem B. 2018;122:6551–8.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Gu M, Wang K, Chen Z, Dai L, Liu J, et al. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia. 2010;81:1163–70.

    Article  CAS  Google Scholar 

  88. Wang X, Zhang X, Xu X, Zhang L. The LiCl effect on the conformation of lentinan in DMSO. Biopolymers. 2012;97:840–5.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, Li S, Zhang L. Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution. J Phys Chem B. 2010;114:4945–54.

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Zhang Y, Zhang L, Ding Y. Multiple conformation transitions of triple helical lentinan in DMSO/water by microcalorimetry. J Phys Chem B. 2009;113:9915–23.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang X, Zhang L, Xu X. Morphologies and conformation transition of lentinan in aqueous NaOH solution. Biopolymers. 2004;75:187–95.

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, Xu X, Zhang L. Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution. J Phys Chem B. 2008;112:10343–51.

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Li W, Huang X, Liu Y, Li Q, Zheng Z. A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice. Oncotarget. 2017;8:610–23.

    Article  PubMed  Google Scholar 

  94. Li W, Wang J, Hu H, Li Q, Liu Y, Wang K. Functional polysaccharide lentinan suppresses human breast cancer growth via inducing autophagy and caspase-7-mediated apoptosis. J Func Foods. 2018;45:75–85.

    Article  Google Scholar 

  95. Wang X, Wang Y, Zhou Q, Peng M, Zhang J, Chen M, et al. Immunomodulatory effect of lentinan on aberrant T subsets and cytokines profile in non-small cell lung cancer patients. Pathol Oncol Res. 2020;26:499–505.

    Article  CAS  PubMed  Google Scholar 

  96. Vannucci L, Sima P, Vetvicka V, Krizan J. Lentinan properties in anticancer therapy: a review on the last 12-year literature. Am J Immunol. 2017;13:50–61.

    Article  CAS  Google Scholar 

  97. Xu H, Zou S, Xu X. The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget. 2017;8:86693–709.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zheng X, Lu F, Xu X, Zhang L. Extended chain conformation of β-glucan and its effect on antitumor activity. J Mater Chem B. 2017;5:5623–31.

    Article  CAS  Google Scholar 

  99. Zheng X, Zhou F, Xu X, Zhang L. Uptake of intraperitoneally administrated triple helical β-glucan for antitumor activity in murine tumor models. J Mater Chem B. 2017;5:9337–45.

    Article  CAS  PubMed  Google Scholar 

  100. Zou S, Duan B, Xu X. Inhibition of tumor growth by β-glucans through promoting CD4+ T cell immunomodulation and neutrophil-killing in mice. Carbohydr Polym. 2019;213:370–81.

    Article  CAS  PubMed  Google Scholar 

  101. Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Tech. 2015;41:49–59.

    Article  CAS  Google Scholar 

  102. Liu Y, Zhao J, Zhao Y, Zong S, Tian Y, Chen S, et al. Therapeutic effects of lentinan on inflammatory bowel disease and colitis‐associated cancer. J Cell Mol Med. 2019;23:750–60.

    Article  CAS  PubMed  Google Scholar 

  103. Goodridge HS, Wolf AJ, Underhill DM. β‐glucan recognition by the innate immune system. Immunol Rev. 2009;230:38–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang Y, Jin H, Yu J, Qu C, Wang Q, Yang S, et al. Quality control and immunological activity of lentinan samples produced in China. Int J Biol Macromol. 2020;159:129–36.

    Article  CAS  PubMed  Google Scholar 

  105. Xu X, Chen P, Zhang L, Ashida H. Immunomodulatory β-glucan from Lentinus edodes activates mitogen-activated protein kinases and nuclear factor-κB in murine RAW 264.7 macrophages. J Biol Chem. 2011;286:31194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang L, Li X, Xu X, Zeng F. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydr Res. 2005;340:1515–21.

    Article  CAS  PubMed  Google Scholar 

  107. Surenjav U, Zhang L, Xu X, Zhang X, Zeng F. Effects of molecular structure on antitumor activities of (1→3)-β-D-glucans from different Lentinus edodes. Carbohydr Polym. 2006;63:97–104.

    Article  CAS  Google Scholar 

  108. Ibrahim R, Hayyan M, AlSaadi M, Hayyan A, Ibrahim S. Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res. 2016;23:13754–88.

    Article  CAS  Google Scholar 

  109. Seyedebrahimi R, Razavi S, Varshosaz J. Controlled delivery of brain derived neurotrophic factor and gold-nanoparticles from chitosan/TPP nanoparticles for tissue engineering applications. J Clust Sci. 2020;31:99–108.

    Article  CAS  Google Scholar 

  110. He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27:1–21.

    Article  PubMed  Google Scholar 

  111. Jia X, Liu Q, Zou S, Xu X, Zhang L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr Polym. 2015;117:434–42.

    Article  CAS  PubMed  Google Scholar 

  112. Jia X, Xu X, Zhang L. Synthesis and stabilization of gold nanoparticles induced by denaturation and renaturation of triple helical β-glucan in water. Biomacromolecules. 2013;14:1787–94.

    Article  CAS  PubMed  Google Scholar 

  113. Li S, Zhang Y, Xu X, Zhang L. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water. Biomacromolecules. 2011;12:2864–71.

    Article  CAS  PubMed  Google Scholar 

  114. Jia X, Chen P, Xu X, Zhang L. Lentinan greatly enhances the dispersibility of single-walled carbon nanotubes in water and decreases the cytotoxicity. Bioact Carbohydr Diet Fibre. 2013;1:111–9.

    Article  CAS  Google Scholar 

  115. Li M, Chen P, Xu M, Xu X. A novel self-assembly Lentinan-tetraphenylethylene composite with strong blue fluorescence in water and its properties. Carbohyd Polym. 2017;174:13–24.

    Article  CAS  Google Scholar 

  116. Miyoshi K, Uezu K, Sakurai K, Shinkai S. Polysaccharide-Polynucleotide complexes. Part 32. Structural analysis of the curdlan/Poly (cytidylic acid) complex with semiempirical molecular orbital calculations. Biomacromolecules. 2005;6:1540–6.

    Article  CAS  PubMed  Google Scholar 

  117. Sakurai K, Mizu M, Shinkai S. Polysaccharide- polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of the natural polysaccharide schizophyllan in the macromolecular complex with single-stranded RNA and DNA. Biomacromolecules. 2001;2:641–50.

    Article  CAS  PubMed  Google Scholar 

  118. Duan B, Zou S, Sun Y, Xu X. Nanoplatform constructed from a β-glucan and polydeoxyadenylic acid for cancer chemotherapy and imaging. Biomacromolecules. 2019;20:1567–77.

    Article  CAS  PubMed  Google Scholar 

  119. Duan B, Zou S, Sun Y, Xu X. Fabrication of tumor-targeting composites based on the triple helical β-glucan through conjugation of aptamer. Carbohydr Polym. 2021;254:117476.

    Article  CAS  PubMed  Google Scholar 

  120. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166:1397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Samuelsen A, Schrezenmeir J, Knutsen SH. Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res. 2014;58:183–93.

    Article  CAS  PubMed  Google Scholar 

  122. Lipke PN, Ovalle R. Cell wall architecture in yeast: new structure and new challenges. J Bacteriol. 1998;180:3735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Osumi M. The ultrastructure of yeast: cell wall structure and formation. Micron. 1998;29:207–33.

    Article  CAS  PubMed  Google Scholar 

  124. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the safety of ‘yeast beta-glucans’ as a novel food ingredient. EFSA J. 2011;9:2137.

    Article  Google Scholar 

  125. Sun Y, Shi X, Zheng X, Nie S, Xu X. Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydr Polym. 2019;207:371–81.

    Article  CAS  PubMed  Google Scholar 

  126. Li H, Wang W, Hou K, Huang Y, Gao L. Autolysis-ultrasonic coupling extraction of β-1,3-D-glucan from waste beer yeast. Fine Chem. 2014;31:96–9.

    CAS  Google Scholar 

  127. Fleet GH, Manners DJ. The enzymic degradation of an alkali-soluble glucan from the cell walls of saccharomyces cerevisiae. J Gen Microbiol. 1977;98:315–27.

    Article  CAS  PubMed  Google Scholar 

  128. Smet RD, Cuvelier CA, Allais LH. Recent advances in oral vaccine development yeast-derived β-glucan particles. Hum Vacc Immunother. 2014;10:1309–18.

    Article  Google Scholar 

  129. Manners DJ, Masson AJ, Patterson JC. The structure of a β-(1→3)-D-glucan from yeast cell walls. Biochem J. 1973;135:19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kollar RR, Reinhold BB, Petráková EE, Yeh H, Cabib E. Architecture of the yeast cell wall. β-(1–>6)-glucan interconnects mannoprotein, β-(1–>3)-glucan, and chitin. J Biol Chem. 1997;272:17762–75.

    CAS  PubMed  Google Scholar 

  131. Hisamatsu M, Mishima T, Teranishi K, Yamada T. The correlation between adhesion of schizophyllan to yeast glucan and its effect on regeneration of yeast protoplast. Carbohydr Res. 1997;298:117–21.

    Article  CAS  PubMed  Google Scholar 

  132. Krainer E, Stark RE, Naider F, Alagramam K, Becker JM. Direct observation of cell wall glucans in whole cells of saccharomyces cerevisiae by magic-angle spinning 13C-NMR. Biopolymers. 1994;34:1627–35.

    Article  CAS  PubMed  Google Scholar 

  133. Williams DL, Pretus HA, Ensley HE, Browder IW. Molecular weight analysis of a water-insoluble, yeast-derived (1→3)-β-D-glucan by organic-phase size-exclusion chromatography. Carbohydr Res. 1994;253:293–8.

    Article  CAS  Google Scholar 

  134. Soto E, Yun SK, Lee J, Kornfeld H, Ostroff G. Glucan particle encapsulated Rifampicin for targeted delivery to macrophages. Polymers. 2010;2:681–9.

    Article  CAS  Google Scholar 

  135. Soto E, Ostroff G. Oral macrophage mediated gene delivery system. NSTI Nanotech. 2007;2:378–81.

    CAS  Google Scholar 

  136. Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv. 2019;16:27–41.

    Article  CAS  PubMed  Google Scholar 

  137. Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutr J. 2014;13:38.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pillemer L, Blum L, Lepow IH, Wurz L, Todd EW. The properdin system and immunity. III. The zymosan assay of properdin. J Exp Med. 1956;103:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6:33–43.

    Article  CAS  PubMed  Google Scholar 

  141. Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from dectin-1. Curr Opin Immunol. 2009;21:30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood. 2004;104:4038–45.

    Article  CAS  PubMed  Google Scholar 

  143. Graaff P, Govers C, Wichers HJ, Debets R. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther. 2018;18:1023–40.

    Article  PubMed  Google Scholar 

  144. Cousens LP, Orange JS, Su HC, Biron CA. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro and endogenously during viral infection. Proc Natl Acad Sci USA. 1997;94:634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xu X, Yasuda M, Mizuno M, Ashida H. β-Glucan from Saccharomyces cerevisiae reduces lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. BBA Gen Subj. 2012;1820:1656–63.

    Article  CAS  Google Scholar 

  146. Cao Y, Sun Y, Zou S, Duan B, Sun M, Xu X. Yeast β‑glucan suppresses the chronic inflammation and improves the microenvironment in adipose tissues of ob/ob mice. J Agric Food Chem. 2018;66:621–9.

    Article  CAS  PubMed  Google Scholar 

  147. Albeituni SH, Ding C, Liu M, Hu X, Luo F, Kloecker G, et al. Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J Immunol. 2016;196:2167–80.

    Article  CAS  PubMed  Google Scholar 

  148. Ning Y, Xu D, Zhang X, Yu B, Qi C. β-Glucan restores tumor-educated dendritic cell maturation to enhance antitumor immune responses. Int J Cancer. 2016;138:2713–23.

    Article  CAS  PubMed  Google Scholar 

  149. Min L, Luo F, Ding C, Albeituni S, Yan J. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J Immunol. 2015;196:5055–65.

    Google Scholar 

  150. Choi J, Kim H, Jung, Hong S, Song J. Consumption of barley β-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol Nutr Food Res. 2010;54:1004–13.

    Article  CAS  PubMed  Google Scholar 

  151. Chen J, Raymond K. Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc Health Risk Man. 2008;4:1265–72.

    Article  CAS  Google Scholar 

  152. Cao Y, Zou S, Xu H, Li M, Tong Z, Xu M, Xu X. Front cover: Hypoglycemic activity of the baker’s yeast β‐glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol Nutr Food Res. 2016;60:2678–90.

    Article  CAS  PubMed  Google Scholar 

  153. Cao Y, Sun Y, Zou S, Li M, Xu X. Orally administered baker’s yeast β-glucan promotes glucose and lipid homeostasis in the livers of obesity and diabetes model mice. J Agric Food Chem. 2017;65:9665–74.

    Article  CAS  PubMed  Google Scholar 

  154. Garello F, Stefania R, Aime S, Terreno E, Castelli DD. Successful entrapping of liposomes in glucan particles: an innovative micron-sized carrier to deliver water-soluble molecules. Mol Pharm. 2014;11:3760–5.

    Article  CAS  PubMed  Google Scholar 

  155. Sun Y, Duan B, Chen H, Xu X. A novel strategy for treating inflammatory bowel disease by targeting delivery of methotrexate through glucan particles. Adv Health Mater. 2020;9:1901805.

    Article  CAS  Google Scholar 

  156. Soto ER, Ostroff GR. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjugate Chem. 2008;19:840–8.

    Article  CAS  Google Scholar 

  157. Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009;458:1180–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu H, Jia Z, Yang C, Song M, Jing Z, Zhao Y, et al. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials. 2018;167:32–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22075213, 21875167, and 21574102), National Key R&D Program (2016YFD0400202), National Natural Science Foundation of China (51603195) and Key R&D Plan of Hubei Province (2020BCA079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingye Liu or Xiaojuan Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, N., He, F. et al. Specific β-glucans in chain conformations and their biological functions. Polym J 54, 427–453 (2022). https://doi.org/10.1038/s41428-021-00587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00587-8

Search

Quick links