Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral lipid bilayers are enantioselectively permeable

Abstract

Homochiral membrane bilayers organize biological functions in all domains of life. The membrane’s permeability—its key property—correlates with a molecule’s lipophilicity, but the role of the membrane’s rich and uniform stereochemistry as a permeability determinant is largely ignored in empirical and computational measurements. Here, we describe a new approach to measuring permeation using continuously generated microfluidic droplet interface bilayers (DIBs, generated at a rate of 480 per minute) and benchmark this system by monitoring fluorescent dye DIB permeation over time. Enantioselective permeation of alkyne-labelled amino acids (Ala, Val, Phe, Pro) and dipeptides through a chiral phospholipid bilayer was demonstrated using DIB transport measurements; the biological l enantiomers permeated faster than the d enantiomers (from 1.2-fold to 6-fold for Ala to Pro). Enantioselective permeation both poses a potentially unanticipated criterion for drug design and offers a kinetic mechanism for the abiotic emergence of homochirality via chiral transfer between sugars, amino acids and lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DIB permeation assay and circuit schematic.
Fig. 2: Fluorescent dye cargo permeation measurements.
Fig. 3: Permeation measurement of alkyne-labelled compounds.
Fig. 4: Permeability measurement of alkyne-labelled dipeptide diastereomers.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within this article and its Supplementary Information. Raw data of main figures in the article are available from figshare at https://figshare.com/s/b387496fed3d3befd61d.

Code availability

The R code for general data analysis is available from figshare at https://figshare.com/s/b387496fed3d3befd61d.

References

  1. Luisi, P. L., Walde, P. & Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4, 33–39 (1999).

    Article  CAS  Google Scholar 

  2. Deamer, D. W. & Dworkin, J. P. Chemistry and physics of primitive membranes. Top. Curr. Chem. 259, 1–27 (2005).

    Article  CAS  Google Scholar 

  3. Joyce, G. F. & Szostak, J. W. Protocells and RNA self-replication. Cold Spring Harb. Perspect. Biol. 10, a034801 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Overton, E. Vierteljahrsschr. Naturforsch. Ges. Zurich 44, 88–135 (1899).

    Google Scholar 

  5. Al-Awqati, Q. One hundred years of membrane permeability: does Overton still rule? Nat. Cell Biol. 1, E201–E202 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Sacerdote, M. G. & Szostak, J. W. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl Acad. Sci. USA 102, 6004–6008 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, D. J., Leal, L. G., Mitragotri, S. & Shell, M. S. Nanoparticle transport across model cellular membranes: When do solubility-diffusion models break down? J. Phys. D: Appl. Phys. 51, 4004 (2018).

    Article  Google Scholar 

  8. Corti, G., Maestrelli, F., Cirri, M., Zerrouk, N. & Mura, P. Development and evaluation of an in vitro method for prediction of human drug absorption: II. Demonstration of the method suitability. Eur. J. Pharm. Sci. 27, 354–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Sato, K., Ji, W., Álvarez, Z., Palmer, L. C. & Stupp, S. I. Chiral recognition of lipid bilayer membranes by supramolecular assemblies of peptide amphiphiles. ACS Biomater. Sci. Eng. 5, 2786–2792 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Henriques, S. T., Peacock, H., Benfield, A. H., Wang, C. K. & Craik, D. J. Is the mirror image a true reflection? Intrinsic membrane chirality modulates peptide binding. J. Am. Chem. Soc. 141, 20460–20469 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Ishigami, T., Suga, K. & Umakoshi, H. Chiral recognition of l-amino acids on liposomes prepared with l-phospholipid. ACS Appl. Mater. Interfaces 7, 21065–21072 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Venkatesan, G. A. et al. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation. Langmuir 31, 12883–12893 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maglia, G. et al. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 4, 437–440 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Shieh, P. et al. CalFluors: a universal motif for fluorogenic azide probes across the visible spectrum. J. Am. Chem. Soc. 137, 7145–7151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsofina, L. M., Liberman, E. A. & Babakov, A. V. Production of bimolecular protein-lipid membranes in aqueous solution. Nature 212, 681–683 (1966).

    Article  CAS  Google Scholar 

  19. Xu, L., Lee, H., Panchapakesan, R. & Oh, K. W. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab Chip 12, 3936 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Abbyad, P., Dangla, R., Alexandrou, A. & Baroud, C. N. Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab Chip 11, 813–821 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Czekalska, M. A., Kaminski, T. S., Makuch, K. & Garstecki, P. Passive and parallel microfluidic formation of droplet interface bilayers (DIBs) for measurement of leakage of small molecules through artificial phospholipid membranes. Sensors Actuators, B 286, 258–265 (2019).

    Article  CAS  Google Scholar 

  23. Carreras, P. et al. A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails. Biomicrofluidics 9, 1–7 (2015).

    Article  Google Scholar 

  24. Bai, Y. et al. A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab Chip 10, 1281–1285 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Barlow, N. E. et al. Rheological droplet interface bilayers (rheo-DIBs): Probing the unstirred water layer effect on membrane permeability via spinning disk induced shear stress. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  26. Fischer, H., Kansy, M., Avdeef, A. & Senner, F. Permeation of permanently positive charged molecules through artificial membranes—influence of physico-chemical properties. Eur. J. Pharm. Sci. 31, 32–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, J. & Feigenson, G. W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76, 2142–2157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, H. & Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stone, Z. B. & Stone, H. A. Imaging and quantifying mixing in a model droplet micromixer. Phys. Fluids 17, 1–11 (2005).

    Article  Google Scholar 

  30. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  31. Morimoto, J., Amano, R., Ono, T. & Sando, S. A parallel permeability assay of peptides across artificial membranes and cell monolayers using a fluorogenic reaction. Org. Biomol. Chem. 17, 2887–2891 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y. H., Sung, P. H. & Sung, K. Synthesis of proline-derived dipeptides and their catalytic enantioselective direct aldol reactions: catalyst, solvent, additive and temperature effects. Amino Acids 38, 839–845 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Tang, Z. et al. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: Unprecedented regiocontrol in aqueous media. Org. Lett. 6, 2285–2287 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hauß, T., Dante, S., Dencher, N. A. & Haines, T. H. Squalane is in the midplane of the lipid bilayer: Implications for its function as a proton permeability barrier. Biochim. Biophys. Acta - Bioenerg. 1556, 149–154 (2002).

    Article  Google Scholar 

  36. Arranz-Gibert, P. et al. Lipid bilayer crossing-the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J. Am. Chem. Soc. 137, 7357–7364 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Viedma, C. Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504 (2005).

    Article  PubMed  Google Scholar 

  39. Noorduin, W. L. et al. Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc. 130, 1158–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Viedma, C., Ortiz, J. E., De Torres, T., Izumi, T. & Blackmond, D. G. Evolution of solid phase homochirality for a proteinogenic amino acid. J. Am. Chem. Soc. 130, 15274–15275 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Soai, K., Shibata, T., Morioka, H. & Choji, K. Excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  CAS  Google Scholar 

  42. Blackmond, D. G., McMillan, C. R., Ramdeehul, S., Schorm, A. & Brown, J. M. Origins of asymmetric amplification in autocatalytic alkylzinc additions. J. Am. Chem. Soc. 123, 10103–10104 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Blackmond, D. G. Autocatalytic models for the origin of biological homochirality. Chem. Rev. 120, 4831–4847 (2019).

    Article  PubMed  Google Scholar 

  44. Wagner, A. J., Zubarev, D. Y., Aspuru-Guzik, A. & Blackmond, D. G. Chiral sugars drive enantioenrichment in prebiotic amino acid synthesis. ACS Cent. Sci. 3, 322–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weber, A. L. & Pizzarello, S. The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution. Proc. Natl Acad. Sci. USA 103, 12713–12717 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adamala, K. & Szostak, J. W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gillams, R. & Jia, T. Mineral surface-templated self-assembling systems: Case studies from nanoscience and surface science towards origins of life research. Life 8, 10 (2018).

    Article  PubMed Central  Google Scholar 

  49. Danger, G., Charlot, S., Boiteau, L. & Pascal, R. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids. Amino Acids 42, 2331–2341 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. the sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Article  Google Scholar 

  52. Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    Article  CAS  Google Scholar 

  53. Morigaki, K., Dallavalle, S., Walde, P., Colonna, S. & Luisi, P. L. Autopoietic self-reproduction of chiral fatty acid vesicles. J. Am. Chem. Soc. 119, 292–301 (1997).

    Article  CAS  Google Scholar 

  54. Grahame, D. A. S. et al. Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil. Soft Matter 7, 7359–7365 (2011).

    Article  CAS  Google Scholar 

  55. Peng, J. et al. New dicholesteryl-based gelators: Chirality and spacer length effect. Langmuir 24, 2992–3000 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, I. A., Roberts, R. W. & Szostak, J. W. The emergence of competition between model protocells. Science 305, 1474–1476 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Breslow, R. & Cheng, Z. L. l-amino acids catalyze the formation of an excess of d-glyceraldehyde, and thus of other d sugars, under credible prebiotic conditions. Proc. Natl Acad. Sci. USA 107, 5723–5725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 3, 704–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Price, A. K., MacConnell, A. B. & Paegel, B. M. hνSABR: photochemical dose-response bead screening in droplets. Anal. Chem. 88, 2904–2911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cochrane, W. G. et al. Activity-based DNA-encoded library screening. ACS Comb. Sci. 21, 425–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding from the Simons Foundation through the Simons Collaboration on the Origins of Life (SCOL 287625), the National Institutes of Health (R01GM120491) and the National Science Foundation (1255250) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.H., W.G.C. and B.M.P. conceived the research. J.H. performed the experiments. D.G.B. guided the experimental design related to dipeptides. A.X.J. synthesized and characterized dipeptides. J.H. and B.M.P. analysed the data. All authors wrote the manuscript.

Corresponding author

Correspondence to Brian M. Paegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, methods and data analysis.

Supplementary Video 1

Droplet generator.

Supplementary Video 2

Droplet synchronizer1_Start.

Supplementary Video 3

Droplet synchronizer2_End.

Supplementary Video 4

Entrance of incubator.

Supplementary Video 5

DIB trains in the incubator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Cochrane, W.G., Jones, A.X. et al. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 13, 786–791 (2021). https://doi.org/10.1038/s41557-021-00708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00708-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing