Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds

Abstract

Heterometallic clusters are important in catalysis and small-molecule activation because of the multimetallic synergistic effects from different metals. However, multimetallic species that contain uranium–metal bonds remain very scarce due to the difficulties in their synthesis. Here we present a straightforward strategy to construct a series of heterometallic clusters with multiple uranium–metal bonds. These complexes were created by facile reactions of a uranium precursor with Ni(COD)2 (COD, cyclooctadiene). The multimetallic clusters’ cores are supported by a heptadentate N4P3 scaffold. Theoretical investigations indicate the formation of uranium–nickel bonds in a U2Ni2 and a U2Ni3 species, but also show that they exhibit a uranium–uranium interaction; thus, the electronic configuration of uranium in these species is U(iii)-5f26d1. This study provides further understanding of the bonding between f-block elements and transition metals, which may allow the construction of df heterometallic clusters and the investigation of their potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of multimetallic bridged clusters.
Fig. 2: Molecular structures of 2, 3-U2Ni2Cl2, 4-U2Ni2 and 5-U2Ni3.
Fig. 3: Highest doubly occupied molecular orbital of 4-U2Ni2 and 5-U2Ni3.
Fig. 4: Electronic structure studies by SQUID magnetometry and UV−visible absorption spectroscopy.

Similar content being viewed by others

Data availability

Crystal data of 1, 2, 3-U2Ni2Cl2, 4-U2Ni2 and 5-U2Ni3 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under reference numbers CCDC-1842367 (1), 1842368 (2), 1843093 (3-U2Ni2Cl2), 1843092 (4-U2Ni2) and 1842369 (5-U2Ni3). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif). All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Adams, R. D. & Cotton, F. A. Catalysis by Di- and Polynuclear Metal Cluster Complexes (Wiley-VCH, Weinheim, 1998).

  2. Liddle, S. T. Molecular Metal–Metal Bonds: Compounds, Synthesis, Properties (Wiley-VCH, Weinheim, 2015).

  3. Hill, M. S., Hitchcock, P. B. & Pongtavornpinyo, R. A linear homocatenated compound containing six indium centers. Science 311, 1904–1907 (2006).

    Article  CAS  Google Scholar 

  4. Butovskii, M. V. et al. Molecules containing rare-earth atoms solely bonded by transition metals. Nat. Chem. 2, 741–744 (2010).

    Article  CAS  Google Scholar 

  5. Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    Article  CAS  Google Scholar 

  6. Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).

    Article  CAS  Google Scholar 

  7. McWilliams, S. F. & Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 48, 2059–2065 (2015).

    Article  CAS  Google Scholar 

  8. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–401 (2004).

    Article  CAS  Google Scholar 

  9. MacLeod, K. C. & Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 5, 559–565 (2013).

    Article  CAS  Google Scholar 

  10. Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).

    Article  CAS  Google Scholar 

  11. Liddle, S. T. & Mills, D. P. Metal–metal bonds in f-element chemistry. Dalton Trans. 5592–5605 (2009).

  12. Chi, C. et al. Preparation and characterization of uranium–iron triple‐bonded UFe(CO)3 and OUFe(CO)3 complexes. Angew. Chem. Int. Ed. 56, 6932–6936 (2017).

    Article  CAS  Google Scholar 

  13. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008).

    Article  CAS  Google Scholar 

  14. Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride. Nat. Chem. 2, 723–729 (2010).

    Article  CAS  Google Scholar 

  15. Arnold, P. L. et al. Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nat. Chem. 4, 221–227 (2012).

    Article  CAS  Google Scholar 

  16. Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(iii) disproportionation. Nat. Chem. 4, 668–674 (2012).

    Article  CAS  Google Scholar 

  17. Halter, D. P., Heinemann, F. W., Bachmann, J. & Meyer, K. Uranium-mediated electrocatalytic dihydrogen production from water. Nature 530, 317–321 (2016).

    Article  CAS  Google Scholar 

  18. Zhang, L., Zhang, C., Hou, G., Zi, G. & Walter, M. D. Small-molecule activation mediated by a uranium bipyridyl metallocene. Organometallics 36, 1179–1187 (2017).

    Article  CAS  Google Scholar 

  19. Edelmann, F. T. Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2016. Coord. Chem. Rev. 338, 27–140 (2017).

    Article  CAS  Google Scholar 

  20. Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    Article  CAS  Google Scholar 

  21. Arnold, P. L. & Turner, Z. R. Carbon oxygenate transformations by actinide compounds and catalysts. Nat. Rev. Chem. 1, 0002 (2017).

    Article  CAS  Google Scholar 

  22. Halter, D. P., Heinemann, F. W., Maron, L. & Meyer, K. The role of uranium–arene bonding in H2O reduction catalysis. Nat. Chem. 10, 259–267 (2018).

    Article  CAS  Google Scholar 

  23. Sternal, R. S. & Marks, T. J. Actinide-to-transition metal bonds. Synthesis, characterization, and properties of metal–metal bonded systems having the tris(cyclopentadienyl) actinide fragment. Organometallics 6, 2621–2623 (1987).

    Article  CAS  Google Scholar 

  24. Bucaille, A., Le Borgne, T., Ephritikhine, M. & Daran, J. C. Synthesis and X-ray crystal structure of a urana[1]ferrocenophane, the first tris(1,1′-ferrocenylene) metal compound. Organometallics 19, 4912–4914 (2000).

    Article  CAS  Google Scholar 

  25. Monreal, M. J. & Diaconescu, P. L. A weak interaction between iron and uranium in uranium alkyl complexes supported by ferrocene diamide ligands. Organometallics 27, 1702–1706 (2008).

    Article  CAS  Google Scholar 

  26. Gardner, B. M., McMaster, J., Lewis, W. & Liddle, S. T. Synthesis and structure of [{N(CH2CH2NSiMe3)3}URe(η5-C5H5)2]: a heterobimetallic complex with an unsupported uranium–rhenium bond. Chem. Commun. 2851–2853 (2009).

  27. Patel, D. et al. A formal high oxidation state inverse‐sandwich diuranium complex: a new route to f‐block‐metal bonds. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).

    Article  CAS  Google Scholar 

  28. Fortier, S., Walensky, J. R., Wu, G. & Hayton, T. W. High-valent uranium alkyls: evidence for the formation of Uvi(CH2SiMe3)6. J. Am. Chem. Soc. 133, 11732–11743 (2011).

    Article  CAS  Google Scholar 

  29. Gardner, B. M. et al. The nature of unsupported uranium–ruthenium bonds: a combined experimental and theoretical study. Chem. Eur. J. 17, 11266–11273 (2011).

    Article  CAS  Google Scholar 

  30. Gardner, B. M. et al. An unsupported uranium–rhenium complex prepared by alkane elimination. Chem. Eur. J. 17, 6909–6912 (2011).

    Article  CAS  Google Scholar 

  31. Patel, D. et al. Structural and theoretical insights into the perturbation of uranium–rhenium bonds by dative Lewis base ancillary ligands. Chem. Commun. 47, 295–297 (2011).

    Article  CAS  Google Scholar 

  32. Napoline, J. W. et al. Tris(phosphinoamide)-supported uranium–cobalt heterobimetallic complexes featuring Co→U dative interactions. Inorg. Chem. 52, 12170–12177 (2013).

    Article  CAS  Google Scholar 

  33. Ward, A. L., Lukens, W. W., Lu, C. C. & Arnold, J. Photochemical route to actinide–transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. J. Am. Chem. Soc. 136, 3647–3654 (2014).

    Article  CAS  Google Scholar 

  34. Senchyk, G. A. et al. Hybrid uranyl–vanadium nano-wheels. Chem. Commun. 51, 10134–10137 (2015).

    Article  CAS  Google Scholar 

  35. Hlina, J. A., Pankhurst, J. R., Kaltsoyannis, N. & Arnold, P. L. Metal–metal bonding in uranium–group 10 complexes. J. Am. Chem. Soc. 138, 3333–3345 (2016).

    Article  CAS  Google Scholar 

  36. Hlina, J. A., Wells, J. A., Pankhurst, J. R., Love, J. B. & Arnold, P. L. Uranium–rhodium bonding in heterometallic complexes. Dalton. Trans. 46, 5540–5545 (2017).

    Article  CAS  Google Scholar 

  37. Fortier, S. et al. An N-tethered uranium (iii) arene complex and the synthesis of an unsupported U–Fe bond. Organometallics 36, 4591–4599 (2017).

    Article  CAS  Google Scholar 

  38. Lu, E., Wooles, A., Gregson, M., Cobb, P. & Liddle, S. T. A very short uranium(iv)–rhodium(i) bond with net double‐dative bonding character. Angew. Chem. Int. Ed. 57, 6587–6591 (2018).

    Article  CAS  Google Scholar 

  39. Greenwood, B. P., Rowe, G. T., Chen, C. H., Foxman, B. M. & Thomas, C. M. Metal−metal multiple bonds in early/late heterobimetallics support unusual trigonal monopyramidal geometries at both Zr and Co. J. Am. Chem. Soc. 132, 44–45 (2010).

    Article  CAS  Google Scholar 

  40. Culcu, G. et al. Heterobimetallic complexes comprised of Nb and Fe: isolation of a coordinatively unsaturated Nbiii/Fe0 bimetallic complex featuring a Nb≡Fe triple bond. J. Am. Chem. Soc. 139, 9627–9636 (2017).

    Article  CAS  Google Scholar 

  41. Rudd, P. A. et al. Metal–alane adducts with zero-valent nickel, cobalt, and iron. J. Am. Chem. Soc. 133, 20724–20727 (2011).

    Article  CAS  Google Scholar 

  42. Eisenhart, R. J., Clouston, L. J. & Lu, C. C. Configuring bonds between first-row transition metals. Acc. Chem. Res. 48, 2885–2894 (2015).

    Article  CAS  Google Scholar 

  43. Sgro, M. J. & Stephan, D. W. Frustrated Lewis pair inspired carbon dioxide reduction by a ruthenium tris(aminophosphine) complex. Angew. Chem. Int. Ed. 51, 11343–11345 (2012).

    Article  CAS  Google Scholar 

  44. Gardner, B. M. & Liddle, S. T. Uranium triamidoamine chemistry. Chem. Commun. 51, 10589–10607 (2015).

    Article  CAS  Google Scholar 

  45. Pyykkö, P. & Atsumi, M. Molecular single‐bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    Article  Google Scholar 

  46. Ritchey, J. M. et al. An organothorium–nickel phosphido complex with a short Th–Ni distance. The structure of Th(η5-C5Me5)2(μ-PPh2)2Ni(CO)2. J. Am. Chem. Soc. 107, 501–503 (1985).

    Article  CAS  Google Scholar 

  47. Hay, P. J., Ryan, R. R., Salazar, K. V., Wrobleski, D. A. & Sattelberger, A. P. Synthesis and X-ray structure of (C5Me5)2Th(μ-PPh2)2Pt(PMe3): a complex with a thorium–platinum bond. J. Am. Chem. Soc. 108, 313–315 (1986).

    Article  CAS  Google Scholar 

  48. Rinehart, J. D., Harris, T. D., Kozimor, S. A., Bartlett, B. M. & Long, J. R. Magnetic exchange coupling in actinide-containing molecules. Inorg. Chem. 48, 3382–3395 (2009).

    Article  CAS  Google Scholar 

  49. Mills, D. P. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nat. Chem. 3, 454–460 (2011).

    Article  CAS  Google Scholar 

  50. Kindra, D. R. & Evans, W. J. Magnetic susceptibility of uranium complexes. Chem. Rev. 114, 8865–8882 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant no. 21772088), the Natural Science Foundation of Jiangsu Province (grant no. BK20170635), the Fundamental Research Funds for the Central Universities, the program of Jiangsu Specially-Appointed Professor and the Young Elite Scientist Sponsorship Program of the China Association of Science and Technology. The authors thank Y. Song (Nanjing University) and S. Jiang (Peking University) for useful discussion.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. conceived this project. G.F. performed the synthesis experiments. M.Z. solved all of the X-ray structures. D.S. performed the SQUID experiments. C.Z. and G.F. analysed the experimental data. L.M. conducted the theoretical computations and analysed the results. C.Z. and L.M. drafted the paper with support from G.F., X.W. and S.W. All the authors discussed the results and contributed to the preparation of the final manuscript.

Corresponding authors

Correspondence to Laurent Maron or Congqing Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures; Supplementary figures; X-ray crystallographic analysis; theoretical calculations; Supplementary references

Crystallographic data

CIF for compound 1; CCDC reference: 1842367

Crystallographic data

CIF for compound 2; CCDC reference: 1842368

Crystallographic data

CIF for compound 3-U2Ni2Cl2; CCDC reference: 1843093

Crystallographic data

CIF for compound 4-U2Ni2; CCDC reference: 1843092

Crystallographic data

CIF for compound 5-U2Ni3; CCDC reference: 1842369

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Zhang, M., Shao, D. et al. Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nature Chem 11, 248–253 (2019). https://doi.org/10.1038/s41557-018-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0195-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing