Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon-free sandwich compounds based on arsenic and antimony with icosahedral metal cores

Subjects

Abstract

Traditionally, a metallocene complex comprises a metal centre sandwiched between two aromatic organic ligands and such complexes have been extensively investigated. Carbon-free analogues of metallocene with homoleptic As5 or Sb5 ligands, however, have remained experimentally elusive, especially analogues of higher nuclearity. Here we report the synthesis and characterization of sandwich-type clusters [Pn@M12Pn10(Pn5)2]4–/5– (Pn = As, Sb; M = Co, Fe), where the endohedral icosahedral cluster [Pn@M12] can be regarded as a spherical-like three-dimensional coordination centre surrounded by a Pn10 ring and two Pn5 pentagonal caps. Quantum chemical calculations reveal that the [Pn@M12] has orbitals that mimic 1S, 1P and 1D electronic shells, which can interact with the outer (Pn5)2 ring layer. These interactions occur because the frontier orbitals are dominated by the (n − 1)d block orbitals of the metal atoms. The π1-As5 orbitals interact with 1S and part of the 1P shell of the central core, while the π2- and π3-As5 orbitals interact with the symmetry-allowed part of the 1P and 1D shells. The characteristics of this orbital interaction are analogous to those of mononuclear metallocenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected examples of known and predicted sandwich complexes with cyclopentadienyl or cyclo-P5, cyclo-As5 and cyclo-Sb5 ligands.
Fig. 2: Molecular structures of the cluster anions [Pn@M12Pn10(Pn5)2]5– (Pn = As, Sb; M = Co, Fe) and their selected fragments.
Fig. 3: Selected orbitals revealing the bonding interaction in [As@Co12@As10(As5)2]4–.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2204629 (1′), 2204630 (2′), 2204596 (3′). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Kealy, T. J. & Pauson, P. L. A new type of organo-iron compound. Nature 168, 1039–1040 (1951).

    Article  CAS  Google Scholar 

  2. Fischer, E. O. & Pfab, W. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. B 7, 377–379 (1952).

  3. Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952).

    Article  CAS  Google Scholar 

  4. Togni, A. & Halterman, R. L. Metallocenes: Synthesis Reactivity Applications (Wiley, 1998).

  5. Gómez Arrayás, R., Adrio, J. & Carretero, J. C. Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 45, 7674–7715 (2006).

    Article  Google Scholar 

  6. Jaouen, G., Vessières, A. & Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 44, 8802–8817 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Luo, J., Hu, B., Hu, M., Wu, W. & Liu, T. L. An energy-dense, powerful, robust bipolar zinc–ferrocene redox-flow battery. Angew. Chem. Int. Ed. 61, e202204030 (2022).

    Article  CAS  Google Scholar 

  8. Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011).

    Article  PubMed  Google Scholar 

  9. Liu, J. et al. An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater. 20, 2508–2511 (2008).

    Article  CAS  Google Scholar 

  10. Mathey, F. Les phosphacymantrenes, premiers heterocycles phosphores dotes d’une veritable chimie ‘aromatique’. Tetrahedron Lett. 17, 4155–4158 (1976).

    Article  Google Scholar 

  11. Maigrot, N., Avarvari, N., Charrier, C. & Mathey, F. Synthesis of 1,2-diphospholide Ions. Angew. Chem. Int. Ed. 34, 590–592 (1995).

    Article  CAS  Google Scholar 

  12. Bartsch, R., Hitchcock, P. B. & Nixon, J. F. First structural characterisation of penta- and hexa-phosphorus analogues of ferrocene. Synthesis, crystal and molecular structure of the air-stable, sublimable iron sandwich compounds [Fe(η5-C2R2P3)2], and [Fe(η5-C3R3P2)(η5-C2R2P3)] (R = But). J. Chem. Soc., Chem. Commun. 1146–1148 (1987).

  13. Scherer, O. J., Hilt, T. & Wolmershäuser, G. [{CpR(OC)2Fe}2(μ-η1:η1-P4)]: starting material for the synthesis of iron sandwich compounds with a 1,2,3-triphospholylligand and of a trinuclear iron complex with a P11 ligand. Angew. Chem. Int. Ed. 39, 1425–1427 (2000).

  14. Scherer, O. J. & Brück, T. [(η5-P5)Fe(η5-C5Me5)], a pentaphosphaferrocene derivative. Angew. Chem. Int. Ed. 26, 59 (1987).

  15. Scheer, M., Deng, S., Scherer, O. J. & Sierka, M. Tetraphosphacyclopentadienyl and triphosphaallyl ligands in iron complexes. Angew. Chem. Int. Ed. 44, 3755–3758 (2005).

    Article  CAS  Google Scholar 

  16. Heinl, C. et al. The missing parent compound [(C5H5)Fe(η5-P5)]: synthesis, characterization, coordination behavior and encapsulation. Chemistry 27, 7542–7548 (2021).

  17. Peresypkina, E., Virovets, A. & Scheer, M. Organometallic polyphosphorus complexes as diversified building blocks in coordination chemistry. Coord. Chem. Rev. 446, 213995 (2021).

    Article  CAS  Google Scholar 

  18. Giusti, L. et al. Coordination chemistry of elemental phosphorus. Coord. Chem. Rev. 441, 213927 (2021).

    Article  CAS  Google Scholar 

  19. Urne, E., Brennessel, W. W., Cramer, C. J., Ellis, J. E. & von Ragué Schleyer, P. A carbon-free sandwich complex [(P5)2Ti]2−. Science 295, 832–834 (2002).

    Article  Google Scholar 

  20. Wang, Z. C., Qiao, L., Sun, Z. M. & Scheer, M. Inorganic ferrocene analogue [Fe(P4)2]2–. J. Am. Chem. Soc. 144, 6698–6702 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Scherer, O., Blath, C. & Wolmershäuser, G. Ferrocene mit einem Pentaarsacyclopentadienyl-Liganden. J. Organomet. Chem. 387, C21–C24 (1990).

    Article  CAS  Google Scholar 

  22. Breunig, H. J., Burford, N. & Rösler, R. Stabilization of a pentastibacyclopentadienyl ligand in the triple-decker sandwich complexes [{(η5-1,2,4-tBu3C5H2)Mo}2(μ,η5-Sb5)] and [(η5-1,2,4-tBu3C5H2)Mo(μ,η5-Sb5)Mo(η5-1,4-tBu2-2-MeC5H2)]. Angew. Chem. Int. Ed. 39, 4148–4150 (2000).

  23. Scherer, O. J., Wiedemann, W. & Wolmershäuser, G. [(η5-C5H4R)(CO)3Cr]2Cr(μ,η5-As5)Cr(η5-C5H4Me)], ein Tripeldecker-Sandwichkomplex mit unverzerttem cyclo-As5-Mitteldeck. J. Organomet. Chem. 361, C11–C14 (1989).

  24. Lein, M., Frunzke, J. & Frenking, G. Structures and bonding of the sandwich complexes Ti(η5-E5)22– (E = CH, N, P, As, Sb): a theoretical study. Inorg. Chem. 42, 2504–2511 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Frunzke, J., Lein, M. & Frenking, G. Structures, metal–ligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A theoretical study. Organometallics 21, 3351–3359 (2002).

    Article  CAS  Google Scholar 

  26. Murahashi, T. et al. Discrete sandwich compounds of monolayer palladium sheets. Science 313, 1104–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Teramoto, M. et al. Three-dimensional sandwich nanocubes composed of 13-atom palladium core and hexakis-carbocycle shell. J. Am. Chem. Soc. 140, 12682–12686 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Pan, F. X. et al. An all-metal aromatic sandwich complex [Sb3Au3Sb3]3‒. J. Am. Chem. Soc. 137, 10954–10957 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, H. L. et al. A sandwich-type cluster containing Ge@Pd3 planar fragment flanked by aromatic nonagermanide caps. Nat. Commun. 11, 5286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spiekermann, A., Hoffmann, S. D., Kraus, F. & Fässler, T. F. [Au3Ge18]5‒—a gold–germanium cluster with remarkable Au–Au interactions. Angew. Chem. Int. Ed. 46, 1638–1640 (2007).

    Article  Google Scholar 

  31. Moses, M. J., Fettinger, J. C. & Eichhorn, B. W. Interpenetrating As20 fullerene and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion. Science 300, 778–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y. et al. Sb@Ni12@Sb20–/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 139, 619–622 (2017).

    Article  PubMed  Google Scholar 

  33. Li, Z. Y. et al. Counterion-induced crystallization of intermetalloid matryoshka clusters [Sb@Pd12@Sb20]3−,4−. Dalton Trans. 46, 3453–3456 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Stegmaier, S. & Fässler, T. F. A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20]12– in the ternary phases A12Cu12Sn21 (A = Na, K). J. Am. Chem. Soc. 133, 19758–19768 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Jinlong, Y., Chuanyun, X., Shangda, X. & Kelin, W. Stability, electronic and magnetic properties, and reactivity of icosahedral MCo12 clusters. Phys. Rev. B 48, 12155–12163 (1993).

    Article  CAS  Google Scholar 

  36. Zhang, H., Cui, C. & Luo, Z. The doping effect of 13-atom iron clusters on water adsorption and O–H bond dissociation. J. Phys. Chem. A 123, 4891–4899 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Moses, M. J., Fettinger, J. C. & Eichhorn, B. W. [Ni5Sb17]4– transition-metal Zintl ion complex: crossing the Zintl border in molecular intermetalloid clusters. Inorg. Chem. 46, 1036–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ruiz-Martínez, A., Casanova, D. & Alvarez, S. Polyhedral structures with an odd number of vertices: nine-coordinate metal compounds. Chemistry 14, 1291–1303 (2008).

    Article  PubMed  Google Scholar 

  39. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, J. et al. Looking at platinum carbonyl nanoclusters as superatoms. Nanoscale 14, 3946–3957 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Gascoin, F. & Sevov, S. C. Synthesis and characterization of the ‘metallic salts’ A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with isolated zigzag tetramers of Pn44− and an extra delocalized electron. Inorg. Chem. 40, 5177–5181 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Wakatsuki, Y., Yamazaki, H., Lindner, E. & Bosamle, A. 1,3-Butadiene-1,4-diyl)(η5-cyclopentadienyl)-(triphenylphosphine)cobalt with various substituents. Inorg. Synth. 26, 189–200 (1989).

  43. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  44. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  45. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. te Velde, G. et al. Chemistry with ADF. J. Comp. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  47. Ernzerhof, M. & Scuseria, G. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029 (1999).

    Article  CAS  Google Scholar 

  48. Adamo, C. & Barone, V. Physically motivated density functionals with improved performances: the modified Perdew–Burke–Ernzerhof model. J. Chem. Phys. 116, 5933 (2002).

    Article  CAS  Google Scholar 

  49. Ziegler, T. & Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 46, 1–10 (1977).

    Article  CAS  Google Scholar 

  50. Mitoraj, M. & Michalak, A. Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J. Mol. Model. 14, 681–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Mitoraj, M. P., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92161102, 21971118 and 22003048) and the Natural Science Foundation of Tianjin City (numbers 21JCZXJC00140 and 20JCYBJC01560) to Z.-M.S. Z.-M.S. thanks the 111 project (B18030) from China (MOE). A.M.C. thanks ANID for regular grant 1221676.

Author information

Authors and Affiliations

Authors

Contributions

Z.-M.S. conceived and directed the research. X.-H.Y. synthesized compounds 1′ and 2′. W.-X.C. synthesized compound 3′. A.M.-C. and T.Y. performed the computational studies. X.-H.Y. and W.-X.C. performed the single-crystal X-ray diffraction, EDX and ESI-MS, and analysed the data. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Zhong-Ming Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Giovanni Maestri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Discussion and Tables 1–7.

Supplementary Data 1

Crystallographic data for complex 1′ (CCDC 2204629).

Supplementary Data 2

Crystallographic Data for complex 2′ (CCDC 2204630).

Supplementary Data 3

Crystallographic data for complex 3′ (CCDC 2204596).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, XH., Chen, WX., Yang, T. et al. Carbon-free sandwich compounds based on arsenic and antimony with icosahedral metal cores. Nat. Synth 2, 423–429 (2023). https://doi.org/10.1038/s44160-023-00247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00247-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing