Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

PET/MR imaging of inflammation in atherosclerosis

Abstract

Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between atherosclerosis and the immune system.
Fig. 2: Timeline of the development of PET/MR imaging systems.
Fig. 3: PET and MR imaging.
Fig. 4: Immuno-PET probes evaluated in different haematopoietic-mediated conditions.
Fig. 5: Associations between atherosclerosis and its comorbidities, as evaluated by PET/MRI.

Similar content being viewed by others

References

  1. Libby, P., Ridker, P. & Hansson, G. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    CAS  PubMed  Google Scholar 

  2. Benjamin, E. J. et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Ridker, P. M. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 37, 1720–1722 (2016).

    PubMed  Google Scholar 

  4. Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. 24, 711–720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018).

    CAS  PubMed  Google Scholar 

  7. Roth, S. et al. Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Sci. Transl. Med 10, eaao1313 (2018).

    PubMed  Google Scholar 

  8. Ridker, P. M. Canakinumab for residual inflammatory risk. Eur. Heart J. 38, 3545–3548 (2017).

    CAS  PubMed  Google Scholar 

  9. Ridker, P. M. et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  10. Fleg, J. L. et al. Detection of high-risk atherosclerotic plaque. JACC Cardiovasc. Imaging 5, 941–955 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Wüst, R. C. I. et al. Emerging magnetic resonance imaging techniques for atherosclerosis imaging: high magnetic field, relaxation time mapping, and fluorine-19 imaging. Arterioscler. Thromb. Vasc. Biol. 39, 841–849 (2019).

    PubMed  Google Scholar 

  12. Calcagno, C. et al. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR Biomed. 28, 1304–1314 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Taylor, A. J., Salerno, M., Dharmakumar, R. & Jerosch-Herold, M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc. Imaging 9, 67–81 (2016).

    PubMed  Google Scholar 

  14. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbertson, M. W. et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    PubMed  PubMed Central  Google Scholar 

  17. Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol. 11, 157–165 (2015).

    PubMed  Google Scholar 

  18. Rohrer, J. D. et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 14, 253–262 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Hayes, C., Padhani, A. R. & Leach, M. O. Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed. 15, 154–163 (2002).

    PubMed  Google Scholar 

  20. Just, N. Improving tumour heterogeneity MRI assessment with histograms. Br. J. Cancer 111, 2205–2213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hetland, M. L. et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann. Rheum. Dis. 68, 384–390 (2009).

    CAS  PubMed  Google Scholar 

  22. Weissleder, R., Nahrendorf, M. & Pittet, M. J. Imaging macrophages with nanoparticles. Nat. Mater. 13, 125–138 (2014).

    CAS  PubMed  Google Scholar 

  23. Senders, M. L. et al. Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nat. Nanotechnol. 15, 398–405 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tawakol, A. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    PubMed  Google Scholar 

  25. Kim, E. J., Kim, S., Kang, D. O. & Seo, H. S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18F-fluorodeoxyglucose positron emission tomographic imaging. Circ. Cardiovasc. Imaging 7, 454–460 (2014).

    PubMed  Google Scholar 

  26. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    CAS  PubMed  Google Scholar 

  28. Libby, P., Lichtman, A. H. & Hansson, G. K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38, 1092–1104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 47, C7–12 (2006).

    CAS  PubMed  Google Scholar 

  30. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 235, 612–616 (2009).

    Google Scholar 

  31. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest. 105, 1049–1056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Michelsen, K. S. et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  PubMed  Google Scholar 

  37. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017).

    CAS  PubMed  Google Scholar 

  40. Courties, G. et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ. Res. 116, 407–417 (2015).

    CAS  PubMed  Google Scholar 

  41. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Halade, G. V., Norris, P. C., Kain, V., Serhan, C. N. & Ingle, K. A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 11, eaao1818 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Ameen Ismahil, M. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Google Scholar 

  46. Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    CAS  PubMed  Google Scholar 

  48. Ketelhuth, D. F. J. & Hansson, G. K. Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678 (2016).

    CAS  PubMed  Google Scholar 

  49. Zhou, X., Robertson, A. K. L., Rudling, M., Parini, P. & Hansson, G. K. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ. Res. 96, 427–434 (2005).

    CAS  PubMed  Google Scholar 

  50. Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G. K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102, 2919–2922 (2000).

    CAS  PubMed  Google Scholar 

  51. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, X., Stemme, S. & Hansson, G. K. Hypercholesterolemia is associated with a T helper (Th) 1 / Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest. 101, 1717–1725 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Diehl, S. & Rincón, M. The two faces of IL-6 on Th1 / Th2. Differentiation 39, 531–536 (2002).

    CAS  Google Scholar 

  54. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    CAS  PubMed  Google Scholar 

  55. Kyaw, T. et al. Cytotoxic and proinflammatory CD8+T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE-deficient mice. Circulation 127, 1028–1039 (2013).

    CAS  PubMed  Google Scholar 

  56. Brenner, D. J. & Hall, E. J. Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357, 2277–2284 (2007).

    CAS  PubMed  Google Scholar 

  57. Zaidi, H. et al. Design and performance evaluation of a whole-body Ingenuity TF PET–MRI system. Phys. Med. Biol. 56, 3091–3106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Catana, C., Guimaraes, A. R. & Rosen, B. R. PET and MR imaging: the odd couple or a match made in heaven? J. Nucl. Med. 54, 815–824 (2013).

    CAS  PubMed  Google Scholar 

  59. Pichler, B. J., Kolb, A., Nägele, T. & Schlemmer, H.-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J. Nucl. Med. 51, 333–336 (2010).

    PubMed  Google Scholar 

  60. Zhou, W. et al. The application of molecular imaging to advance translational research in chronic inflammation. J. Nucl. Cardiol. 28, 2033–2045 (2021).

    PubMed  Google Scholar 

  61. Ye, Y. et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ. Res. 117, 835–845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4, 1334–1336 (1998).

    CAS  PubMed  Google Scholar 

  63. Ammirati, E. et al. Carotid artery plaque uptake of 11C-PK11195 inversely correlates with circulating monocytes and classical CD14++CD16 monocytes expressing HLA-DR. Int. J. Cardiol. Heart Vasc. 21, 32–35 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Tarkin, J. M. et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga] pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934–1944 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, X. et al. [68Ga] Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur. J. Nucl. Med. Mol. Imaging 46, 1616–1625 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1418–1426 (2015).

    Google Scholar 

  68. Keliher, E. J. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Silvola, J. M. U. et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci. Rep. 8, 9720 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Vöö, S. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography. Circ. Cardiovasc. Imaging 9, (2016).

  71. Irkle, A. et al. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

    PubMed  Google Scholar 

  72. Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

    PubMed  Google Scholar 

  73. Jenkins, W. S. et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart 105, 1868–1875 (2019).

    CAS  PubMed  Google Scholar 

  74. Silvola, J. M. U. et al. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci. Rep. 6, 35089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Viitanen, R. et al. First-in-humans study of 68Ga-DOTA-Siglec-9, a PET ligand targeting vascular adhesion protein 1. J. Nucl. Med. 62, 577–583 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sriranjan, R. S. et al. Atherosclerosis imaging using PET: insights and applications. Br. J. Pharmacol. 178, 2186–2203 (2019).

    PubMed  Google Scholar 

  77. van der Valk, F. M. et al. In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc. Imaging 8, 1340–1341 (2015).

    PubMed  Google Scholar 

  78. De Saint-Hubert, M. et al. In vivo molecular imaging of apoptosis and necrosis in atherosclerotic plaques using MicroSPECT-CT and MicroPET-CT imaging. Mol. Imaging Biol. 16, 246–254 (2014).

    PubMed  Google Scholar 

  79. Senders, M. L. et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc. Imaging 12, 2015–2026 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Bala, G. et al. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur. Heart J. Cardiovasc. Imaging 17, 1001–1008 (2016).

    PubMed  Google Scholar 

  81. Broisat, A. et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ. Res. 110, 927–937 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rashidian, M., Keliher, E. J., Bilate, A. M., Duarte, J. N. & Wojtkiewicz, G. R. Noninvasive imaging of immune responses. Proc. Natl Acad. Sci. USA 112, 6146–6151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dmochowska, N. et al. Immuno-PET of innate immune markers CD11b and IL-1β detect inflammation in murine colitis. J. Nucl. Med. 118, 219–287 (2018).

    Google Scholar 

  84. Eichendorff, S. et al. Biodistribution and PET imaging of a novel [68Ga]-anti-CD163-antibody conjugate in rats with collagen-induced arthritis and in controls. Mol. Imaging Biol. 17, 87–93 (2014).

    Google Scholar 

  85. Bala, G. et al. Evaluation of [99mTc]radiolabeled macrophage mannose receptor-specific nanobodies for targeting of atherosclerotic lesions in mice. Mol. Imaging Biol. 20, 260–267 (2017).

    Google Scholar 

  86. Varasteh, Z. et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI Res. 7, 40 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Freise, A. C. et al. Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J. Nucl. Med. 59, 980–985 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tavare, R. et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 cys-diabodies. J. Nucl. Med. 56, 1258–1264 (2015).

    CAS  PubMed  Google Scholar 

  89. Tavare, R. et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA 111, 1108–1113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei, W. et al. ImmunoPET: concept, design, and applications. Chem. Rev. 120, 3787–3851 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Keyaerts, M. et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 57, 27–33 (2016).

    CAS  PubMed  Google Scholar 

  92. Gundlich, B., Musmann, P., Weber, S., Nix, O. & Semmler, W. From 2D PET to 3D PET: issues of data representation and image reconstruction. Z. Med. Phys. 16, 31–46 (2006).

    PubMed  Google Scholar 

  93. Lodge, M. A., Badawi, R. D., Gilbert, R., Dibos, P. E. & Line, B. R. Comparison of 2-dimensional and 3-dimensional acquisition for 18F-FDG PET oncology studies performed on an LSO-based scanner. J. Nucl. Med. 47, 23–31 (2006).

    PubMed  Google Scholar 

  94. Mannheim, J. G. et al. PET/MRI hybrid systems. Semin. Nucl. Med. 48, 332–347 (2018).

    PubMed  Google Scholar 

  95. Drzezga, A. et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J. Nucl. Med. 53, 845–855 (2012).

    PubMed  Google Scholar 

  96. Pérez-Medina, C. et al. In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc. Imaging 9, 950–961 (2016).

    Google Scholar 

  97. Karakatsanis, N. A. et al. Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. J. Nucl. Cardiol. 27, 1126–1141 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Andrews, J. P. M. et al. Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: a comparison study. J. Nucl. Cardiol. 28, 1–12 (2021).

    PubMed  Google Scholar 

  99. Fuin, N. et al. PET/MRI in the presence of metal implants: completion of the attenuation map from PET emission data. J. Nucl. Med. 58, 840–845 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Burger, I. A. et al. Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence. J. Nucl. Med. 56, 93–97 (2015).

    PubMed  Google Scholar 

  101. Samber, D. D. et al. Segmentation of carotid arterial walls using neural networks. World J. Radiol. 12, 1–9 (2020).

    PubMed  PubMed Central  Google Scholar 

  102. Cai, J. et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112, 3437–3444 (2005).

    PubMed  Google Scholar 

  103. Moody, A. R. et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral Ischemia. Circulation 107, 3047–3052 (2003).

    PubMed  Google Scholar 

  104. Moody, A., Allder, S., Lennox, G., Gladman, J. & Fentem, P. Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet 353, 122–123 (1999).

    CAS  PubMed  Google Scholar 

  105. Caravan, P., Ellison, J. J., Mcmurry, T. J. & Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

    CAS  PubMed  Google Scholar 

  106. Calcagno, C. et al. Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler. Thromb. Vasc. Biol. 28, 1311–7 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Abdel-Aty, H. et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109, 2411–2416 (2004).

    PubMed  Google Scholar 

  108. Na, H. Bin, Song, I. C. & Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009).

    CAS  Google Scholar 

  109. Ruehm, S. G., Corot, C., Vogt, P., Kolb, S. & Debatin, J. F. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422 (2001).

    CAS  PubMed  Google Scholar 

  110. Tang, T. Y. et al. The ATHEROMA (Atorvastatin Therapy: Effects on reduction of macrophage activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol. 53, 2039–2050 (2009).

    CAS  PubMed  Google Scholar 

  111. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 25, 2491–2499 (2003).

    Google Scholar 

  112. Ogawa, S., Lee, T.-M., Nayak, A. S. & Glynn, P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990).

    CAS  PubMed  Google Scholar 

  113. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  PubMed  Google Scholar 

  114. Shin, L. M. et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry 62, 273–281 (2005).

    PubMed  Google Scholar 

  115. Le Bihan, D. Looking into the functional archetecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4, 469–480 (2003).

    PubMed  Google Scholar 

  116. Le Bihan, D. et al. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001).

    PubMed  Google Scholar 

  117. Warach, S., Chien, D., Li, W., Ronthal, M. & Edelman, R. R. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42, 1717–1723 (1992).

    CAS  PubMed  Google Scholar 

  118. Taouli, B. et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226, 71–78 (2003).

    PubMed  Google Scholar 

  119. Heinzmann, K., Carter, L. M., Lewis, J. S. & Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 1, 697–713 (2017).

    PubMed  Google Scholar 

  120. Honold, L. & Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113–127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Folco, E. J. et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J. Am. Coll. Cardiol. 58, 603–614 (2011).

    CAS  PubMed  Google Scholar 

  122. Vandoorne, K. et al. Imaging the vascular bone marrow niche during inflammatory stress. Circ. Res. 123, 415–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371–1382 (2019).

    PubMed  Google Scholar 

  124. Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115, 284–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Lee, W. W. et al. PET / MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol. 59, 153–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Thackeray, J. T. & Bengel, F. M. Molecular imaging of myocardial inflammation with positron emission tomography post-ischemia. JACC Cardiovasc. Imaging 11, 1340–1355 (2018).

    PubMed  Google Scholar 

  129. Rosengren, A. et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11,119 cases and 13,648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 364, 953–962 (2004).

    PubMed  Google Scholar 

  130. Nabi, H. et al. Increased risk of coronary heart disease among individuals reporting adverse impact of stress on their health: the Whitehall II prospective cohort study. Eur. Heart J. 34, 2697–2705 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Howren, M. B., Lamkin, D. M. & Suls, J. Associations of depression with c-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186 (2009).

    CAS  PubMed  Google Scholar 

  132. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    CAS  PubMed  Google Scholar 

  133. Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    CAS  PubMed  Google Scholar 

  134. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    CAS  PubMed  Google Scholar 

  138. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Robson, P. M. et al. Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Phys. Med. Biol. 63, 225011 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dweck, M. R. et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc. Imaging 11, 94–107 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Panizzi, P. et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med. 17, 1142–1147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Murphy, D. J., Din, M., Hage, F. G. & Reyes, E. Guidelines in review: comparison of ESC and AHA guidance for the diagnosis and management of infective endocarditis in adults. J. Nucl. Cardiol. 26, 303–308 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Saby, L. et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis. J. Am. Coll. Cardiol. 61, 2374–2382 (2013).

    PubMed  Google Scholar 

  144. Hoen, B. & Duval, X. Infective endocarditis. N. Engl. J. Med. 368, 1425–1433 (2013).

    CAS  PubMed  Google Scholar 

  145. Gillman, A., Smith, J., Thomas, P., Rose, S. & Dowson, N. PET motion correction in context of integrated PET/MR: current techniques, limitations, and future projections. Med. Phys. 44, e430–e445 (2017).

    PubMed  Google Scholar 

  146. Munoz, C. et al. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation. Eur. J. Nucl. Med. Mol. Imaging 45, 1975–1986 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    CAS  PubMed  Google Scholar 

  148. Mehta, N. N. et al. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the general practice research database. Eur. Heart J. 31, 1000–1006 (2010).

    PubMed  Google Scholar 

  149. Avina-Zubieta, J. A., Thomas, J., Sadatsafavi, M., Lehman, A. J. & Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 71, 1524–1529 (2012).

    PubMed  Google Scholar 

  150. Yeung, H. et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol. 149, 1173–1179 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. Naik, H. B. et al. Severity of psoriasis associates with aortic vascular inflammation detected by FDG PET/CT and neutrophil activation in a prospective observational study significance. Arterioscler. Thromb. Vasc. Biol. 35, 2667–2676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Joshi, A. A. et al. Association between aortic vascular inflammation and coronary artery plaque characteristics in psoriasis. JAMA Cardiol. 3, 949–956 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Goyal, A. et al. Chronic stress-related neural activity associates with subclinical cardiovascular disease in psoriasis. JACC Cardiovasc. Imaging 33, 465–477 (2018).

    Google Scholar 

  154. Mehta, N. N. et al. Effect of 2 psoriasis treatments on vascular inflammation and novel inflammatory cardiovascular biomarkers: a randomized placebo-controlled trial. Circ. Cardiovasc. Imaging 11, e007394 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Bissonnette, R. et al. TNF-α Antagonist and vascular inflammation in patients with psoriasis vulgaris: a randomized placebo-controlled study. J. Invest. Dermatol. 137, 1638–1645 (2017).

    CAS  PubMed  Google Scholar 

  156. Silvera, S. S. et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 207, 139–143 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Slart, R. H. J. A. et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur. J. Nucl. Med. Mol. Imaging 45, 1250–1269 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Israel, O. et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J. Nucl. Med. 54, 647–658 (2013).

    PubMed  Google Scholar 

  159. Lambert, R. G. W., Østergaard, M. & Jaremko, J. L. Magnetic resonance imaging in rheumatology. Magn. Reson. Imaging Clin. N. Am. 26, 599–613 (2018).

    PubMed  Google Scholar 

  160. Østergaard, M. et al. The OMERACT MRI in Arthritis Working Group—update on status and future research priorities. J. Rheumatol. 42, 2470–2472 (2015).

    PubMed  Google Scholar 

  161. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    CAS  PubMed  Google Scholar 

  162. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chao, M. P., Majeti, R. & Weissman, I. L. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12, 58–67 (2012).

    CAS  Google Scholar 

  165. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  PubMed  Google Scholar 

  167. Rosenkrantz, A. B. et al. Current status of hybrid PET/MRI in oncologic imaging. Am. J. Roentgenol. 206, 162–172 (2016).

    Google Scholar 

  168. Kearns, A., Gordon, J., Burdo, T. H. & Qin, X. HIV-1–associated atherosclerosis: unraveling the missing link. J. Am. Coll. Cardiol. 69, 3084–3098 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Freiberg, M. S. et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern. Med. 173, 614–622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Vachiat, A., McCutcheon, K., Tsabedze, N., Zachariah, D. & Manga, P. HIV and ischemic heart disease. J. Am. Coll. Cardiol. 69, 73–82 (2017).

    PubMed  Google Scholar 

  171. Reiss, P. et al. Class of antiretroviral drugs and the risk of myocardial infarction. N. Engl. J. Med. 356, 1723–1735 (2007).

    PubMed  Google Scholar 

  172. Zanni, M. V. et al. Effects of antiretroviral therapy on immune function and arterial inflammation in treatment-naive patients with human immunodeficiency virus infection. JAMA Cardiol. 1, 474–480 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Tawakol, A. et al. Association of arterial and lymph node inflammation with distinct inflammatory pathways in human immunodeficiency virus infection. JAMA Cardiol. 2, 163–171 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. Lo, J. et al. Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Lancet HIV 2, e52–e63 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Hsue, P. Y. et al. IL-1β inhibition reduces atherosclerotic inflammation in HIV infection. J. Am. Coll. Cardiol. 72, 2809–2811 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. World Report on Ageing and Health (WHO, 2015).

  177. Prince, M. J. et al. The burden of disease in older people and implications for health policy and practice. Lancet 385, 549–562 (2015).

    PubMed  Google Scholar 

  178. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    PubMed  Google Scholar 

  179. Sarwar, N. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010).

    CAS  PubMed  Google Scholar 

  180. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Rocha, V. Z. & Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6, 399–409 (2009).

    CAS  PubMed  Google Scholar 

  187. Dandona, P., Aljada, A. & Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 25, 4–7 (2004).

    CAS  PubMed  Google Scholar 

  188. Baker, R. G., Hayden, M. S. & Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yahagi, K. et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 37, 191–204 (2017).

    CAS  PubMed  Google Scholar 

  190. Bucerius, J. et al. Arterial and fat tissue inflammation are highly correlated: a prospective 18F-FDG PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 41, 934–945 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. Figueroa, A. L. et al. Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ. Cardiovasc. Imaging 9, e004043 (2016).

    PubMed  PubMed Central  Google Scholar 

  192. Reddy, N. L. et al. Identification of brown adipose tissue using MR imaging in a human adult with histological and immunohistochemical confirmation. J. Clin. Endocrinol. Metab. 99, 117–121 (2014).

    Google Scholar 

  193. Ridker, P. M. et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126, 2739–2748 (2012).

    CAS  PubMed  Google Scholar 

  194. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–20 (2016).

    CAS  PubMed  Google Scholar 

  195. Younossi, Z. M. et al. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 64, 73–84 (2016).

    Google Scholar 

  196. Sarkar, S. et al. Pilot study to diagnose nonalcoholic steatohepatitis with dynamic 18F-FDG PET. Am. J. Roentgenol. 212, 529–537 (2019).

    Google Scholar 

  197. Tang, A. et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267, 422–431 (2013).

    PubMed  PubMed Central  Google Scholar 

  198. Derry, H. M., Padin, A. C., Kuo, J. L., Hughes, S. & Kiecolt-Glaser, J. K. Sex differences in depression: does inflammation play a role? Curr. Psychiatry Rep. 17, 78 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immun. 16, 626–638 (2016).

    CAS  Google Scholar 

  200. Muka, T. et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 1, 767–776 (2016).

    PubMed  Google Scholar 

  201. Bushnell, C. et al. Guidelines for the prevention of stroke in women. Stroke 45, 1545–1588 (2014).

    PubMed  Google Scholar 

  202. Pasterkamp, G., den Ruijter, H. M. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat. Rev. Cardiol. 14, 21–29 (2016).

    PubMed  Google Scholar 

  203. Aggarwal, N. R. Sex differences in ischemic heart disease: advances, obstacles and next steps. Circ. Cardiovasc. Qual. Outcomes 11, e004437 (2018).

    PubMed  Google Scholar 

  204. Taqueti, V. R. et al. Myocardial perfusion imaging in women for the evaluation of stable ischemic heart disease—state-of-the-evidence and clinical recommendations. J. Nucl. Cardiol. 24, 1402–1426 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Mathew, R. C., Bourque, J. M., Salerno, M. & Kramer, C. M. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc. Imaging 13, 1577–1590 (2020).

    PubMed  Google Scholar 

  206. Borlotti, A. et al. Acute microvascular impairment post-reperfused STEMI is reversible and has additional clinical predictive value. JACC Cardiovasc. Imaging 12, 1783–1793 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Binderup, T. et al. Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Sci. Transl. Med. 11, eaaw7736 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Lameijer, M. et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Validating imaging biomarkers as disease-relevant. Nat. Biomed. Eng. 3, 329–330 (2019).

  210. Sperry, B. W. et al. Hot spot imaging in cardiovascular diseases: an information statement from SNMMI, ASNC, and EANM. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-022-02985-8 (2022).

    Article  PubMed  Google Scholar 

  211. Yun, M. et al. F-18 FDG uptake in the large arteries. Clin. Nucl. Med. 26, 314–319 (2001).

    CAS  PubMed  Google Scholar 

  212. Tawakol, A. et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J. Nucl. Cardiol. 12, 294–301 (2005).

    PubMed  Google Scholar 

  213. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Wagner, H. W. Jr A brief history of positron emission tomography (PET). Semin. Nucl. Med. 28, 213–220 (1998).

    PubMed  Google Scholar 

  215. Hess, S., Høilund-Carlsen, P. F. & Alavi, A. Historic images in nuclear medicine 1976: the first issue of clinical nuclear medicine and the first human FDG study. Clin. Nucl. Med. 39, 701–703 (2014).

    PubMed  Google Scholar 

  216. Shao, Y. et al. Simultaneous PET and MR imaging. Phys. Med. Biol. 42, 1965–1970 (1997).

    CAS  PubMed  Google Scholar 

  217. Libby, P., Bhatt, D. L. & Di Carli, M. Fluorodeoxyglucose uptake in atheroma: not so simple. J. Am. Coll. Cardiol. 74, 1233–1236 (2019).

    PubMed  Google Scholar 

  218. Al-Mashhadi, R. H. et al. 18Fluorodeoxyglucose accumulation in arterial tissues determined by PET signal analysis. J. Am. Coll. Cardiol. 74, 1220–1232 (2019).

    CAS  PubMed  Google Scholar 

  219. Taqueti, V. R. et al. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ. Cardiovasc. Imaging 7, 920–929 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Heart Association (17PRE33660729, M.L.S.); the ‘De Drie Lichten’ Foundation in the Netherlands (M.L.S.); the National Institutes of Health grant R01HL122177 (A.T.); the National Heart, Lung, and Blood Institute grants (HL139598, HL131495, HL142495, NS108419) and the MGH Research Scholar Award (M.N.); the National Institutes of Health grants R01 HL118440, R01 HL125703 and R01HL144072; ZonMW Vidi 91713324 and Vici 91818622 (W.J.M.M.); and the NIH grants P01HL131478, R01HL071021, R01HL128056, R01HL144072, R01HL135878 and R01HL143814 (Z.A.F.). All figures were designed using Servier Medical Art (http://www.servier.com).

Author information

Authors and Affiliations

Authors

Contributions

W.J.M.M. and Z.A.F. designed the outline of the manuscript. M.L.S., C.C. and W.J.M.M. wrote the manuscript, and M.L.S. composed the initial figures. All authors discussed the content, reviewed and edited the manuscript, and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Willem J. M. Mulder or Zahi A. Fayad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks DeLisa Fairweather, Marcus Hacker, Juhani Knuuti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senders, M.L., Calcagno, C., Tawakol, A. et al. PET/MR imaging of inflammation in atherosclerosis. Nat. Biomed. Eng 7, 202–220 (2023). https://doi.org/10.1038/s41551-022-00970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00970-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing