Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conserved mechanism for vacuolar magnesium sequestration in yeast and plant cells

Abstract

Magnesium (Mg2+) is an essential nutrient for all life forms. In fungal and plant cells, the majority of Mg2+ is stored in the vacuole but mechanisms for Mg2+ transport into the vacuolar store are not fully understood. Here we demonstrate that members of ancient conserved domain proteins (ACDPs) from Saccharomyces cerevisiae and Arabidopsis thaliana function in vacuolar Mg2+ sequestration that enables plant and yeast cells to cope with high levels of external Mg2+. We show that the yeast genome (as well as other fungal genomes) harbour a single ACDP homologue, referred to as MAM3, that functions specifically in vacuolar Mg2+ accumulation and is essential for tolerance to high Mg. In parallel, vacuolar ACDP homologues were identified from Arabidopsis and shown to complement the yeast mutant mam3Δ. An Arabidopsis mutant lacking one of the vacuolar ACDP homologues displayed hypersensitivity to high-Mg conditions and accumulated less Mg in the vacuole compared with the wild type. Taken together, our results suggest that conserved transporters mediate vacuolar Mg2+ sequestration in fungal and plant cells to maintain cellular Mg2+ homeostasis in response to fluctuating Mg2+ levels in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MAM3 is required for Mg2+ homeostasis and high-Mg tolerance in S. cerevisiae.
Fig. 2: Identification and phylogenetic analysis of ACDP homologues in plants.
Fig. 3: Subcellular localization and expression pattern of MGR1 in Arabidopsis.
Fig. 4: Expression of Arabidopsis vacuolar MGRs restores high-Mg tolerance of the yeast strain mam3Δ deficient in vacuolar Mg2+ sequestration.
Fig. 5: MGR1 is essential for high-Mg tolerance and Mg2+ homeostasis in Arabidopsis.
Fig. 6: Model for Mg2+ transport network in a typical fungal cell and a typical plant cell.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the paper and its Supplementary Information files. All Arabidopsis genes involved in this study can be found at TAIR (www.arabidopsis.org), with the following accession numbers: MGR1 (AT4G14240), MGR2 (AT4G14230), MGR3 (AT1G03270), MGR4 (AT1G47330), MGR5 (AT5G52790), MGR6 (AT4G33700), MGR7 (AT2G14520), MGR8 (AT3G13070) and MGR9 (AT1G55930). Yeast gene information is available at The Saccharomyces Genome Database (www.yeastgenome.org) as follows: MAM3 (YOL060C) and MNR2 (YKL064W). Other sequences can be found on the NCBI database (https://www.ncbi.nlm.nih.gov/), with accession numbers listed in Supplementary Table 2.

References

  1. Karley, A. J., Leigh, R. A. & Sanders, D. Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci. 5, 465–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Okorokov, L. A., Lichko, L. P. & Kulaev, I. S. Vacuoles: main compartments of potassium, magnesium, and phosphate ions in Saccharomyces carlsbergenis cells. J. Bacteriol. 144, 661–665 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boller, T. & Wiemken, A. Dynamics of vacuolar compartmentation. Annu. Rev. Plant Phys. 37, 137–164 (1986).

    Article  CAS  Google Scholar 

  4. Martinoia, E., Meyer, S., De Angeli, A. & Nagy, R. Vacuolar transporters in their physiological context. Annu. Rev. Plant Biol. 63, 183–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Martinoia, E. Vacuolar transporters – companions on a longtime journey. Plant Physiol. 176, 1384–1407 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Tang, R. J. & Luan, S. Rhythms of magnesium. Nat. Plants 6, 742–743 (2020).

    Article  PubMed  Google Scholar 

  7. Okorokov, L. A. et al. Free and bound magnesium in fungi and yeasts. Folia Microbiol. 20, 460–466 (1975).

  8. Shaul, O. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15, 309–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hermans, C., Conn, S. J., Chen, J., Xiao, Q. & Verbruggen, N. An update on magnesium homeostasis mechanisms in plants. Metallomics 5, 1170–1183 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Walker, R. B., Walker, H. M. & Ashworth, P. R. Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol. 30, 214–221 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, R. J. et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3134–3139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amalou, Z., Gibrat, R., Trouslot, P. & D’Auzac, J. Solubilization and reconstitution of the Mg2+/2H+ antiporter of the lutoid tonoplast from Hevea brasiliensis latex. Plant Physiol. 106, 79–85 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borrelly, G. et al. The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity. Proc. Natl Acad. Sci. USA 98, 9660–9665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaul, O. et al. Cloning and characterization of a novel Mg(2+)/H(+) exchanger. EMBO J. 18, 3973–3980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacDiarmid, C. W. & Gardner, R. C. Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J. Biol. Chem. 273, 1727–1732 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Kolisek, M. et al. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J. 22, 1235–1244 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pisat, N. P., Pandey, A. & Macdiarmid, C. W. MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae. Genetics 183, 873–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, L., Tutone, A. F., Drummond, R. S., Gardner, R. C. & Luan, S. A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13, 2761–2775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schock, I. et al. A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J. 24, 489–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Tang, R. J. & Luan, S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr. Opin. Plant Biol. 39, 97–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Yan, Y. W. et al. Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Front. Plant Sci. 9, 274 (2018).

  22. Li, J. et al. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice. Nat. Plants 6, 848–859 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Conn, S. J. et al. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol. 190, 583–594 (2011).

  24. Wang, C. Y. et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. de Baaij, J. H. et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem. 287, 13644–13655 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hirata, Y., Funato, Y., Takano, Y. & Miki, H. Mg2+-dependent interactions of ATP with the cystathionine-beta-synthase (CBS) domains of a magnesium transporter. J. Biol. Chem. 289, 14731–14739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stuiver, M. et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am. J. Hum. Genet. 88, 333–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamazaki, D. et al. Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 9, e1003983 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Armitano, J., Redder, P., Guimaraes, V. A. & Linder, P. An essential factor for high Mg(2+) tolerance of Staphylococcus aureus. Front. Microbiol. 7, 1888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sinharoy, S. et al. A Medicago truncatula cystathionine-beta-synthase-like domain-containing protein is required for rhizobial infection and symbiotic nitrogen fixation. Plant Physiol. 170, 2204–2217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaffers, O. J. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. The rise and fall of novel renal magnesium transporters. Am. J. Physiol. Ren. Physiol. 314, F1027–F1033 (2018).

    Article  Google Scholar 

  32. Funato, Y. & Miki, H. Molecular function and biological importance of CNNM family Mg2+ transporters. J. Biochem. 165, 219–225 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, M., Jensen, L. T., Gardner, A. J. & Culotta, V. C. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem. J. 386, 479–487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt, U. G. et al. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol. 145, 216–229 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cunningham, K. W. & Fink, G. R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2226–2237 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pittman, J. K. Vacuolar Ca(2+) uptake. Cell Calcium 50, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Tang, R. J., Wang, C., Li, K. & Luan, S. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci. 25, 604–617 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Gibson, M. M., Bagga, D. A., Miller, C. G. & Maguire, M. E. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol. Microbiol. 5, 2753–2762 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Eshaghi, S. et al. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313, 354–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lunin, V. V. et al. Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Robert, S., Zouhar, J., Carter, C. & Raikhel, N. Isolation of intact vacuoles from Arabidopsis rosette leaf-derived protoplasts. Nat. Protoc. 2, 259–262 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank ABRC for provision of A. thaliana seed stocks, and C. W. MacDiarmid for gifting yeast strains DY1514 and mnr2Δ. This work was supported by the National Science Foundation (no. MCB-1714795 to S.L.), the Innovative Genomics Institute at the University of California-Berkeley and the National Natural Science Foundation of China (grant no.31770267 to W.-Z.L.). C.W. is partly sponsored by a Tang Distinguished Scholarship at the University of California-Berkeley.

Author information

Authors and Affiliations

Authors

Contributions

R.-J.T., S.-F.M., W.-Z.L. and S.L. conceived the study and designed the experiments. R.-J.T. performed all experiments on yeast. R.-J.T., S.-F.M. and X.-J.Z. performed most of the molecular cloning and genetic work in plants. R.-J.T. and B.Z. carried out ion measurements. Y.Y. and F.-G.Z. assisted with subcellular localization and gene expression analysis. C.W. helped with phylogenetic analysis and preparation of some of the figures. A.-G.F. coordinated the project. R.-J.T. and S.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wen-Zhi Lan or Sheng Luan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Jian Feng Ma, Enrico Martinoia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, RJ., Meng, SF., Zheng, XJ. et al. Conserved mechanism for vacuolar magnesium sequestration in yeast and plant cells. Nat. Plants 8, 181–190 (2022). https://doi.org/10.1038/s41477-021-01087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01087-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing