Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A historical stepping-stone path for an island-colonizing cactus across a submerged “bridge” archipelago

Abstract

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the “bridge” hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of eastern Brazil highlighting the study area and the locations of Cereus sampled during this study (details in Table S1).
Fig. 2: Demographic models compared to test alternative scenarios for colonization of FNI by C. insularis.
Fig. 3: Phylogeography and population structure.
Fig. 4: Highlights of the Ecological niche modeling (ENM) of Cereus fernambucensis and C. insularis (first and second columns, respectively).
Fig. 5: Global sea-level change during the last 120 ka (adapted from Rijsdijk et al. 2014).

Similar content being viewed by others

References

  • Alsos IG, Ehrich D, Eidesen PB, Solstad H, Westergaard KB, Schönswetter P et al. (2015) Long-distance plant dispersal to North Atlantic islands: colonization routes and founder effect. AoB Plants 15:plv036

    Google Scholar 

  • Amaral DT, Minhós-Yano I, Oliveira JVM, Romeiro-Brito M, Bonatelli IAS, Taylor NP et al. (2021) Tracking the xeric biomes of South America: the spatiotemporal diversification of Mandacaru cactus. J Biogeogr 48:3085–3103

    Article  Google Scholar 

  • Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc R Soc Lond B Biol Sci 281:20132980

    Google Scholar 

  • Aquino D, Moreno-Letelier A, González-Botello MA, Arias S (2021) The importance of environmental conditions in maintaining lineage identity in Epithelantha (Cactaceae). Ecol Evol 11:4520–4531

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Evol Syst 15:133–164

    Article  Google Scholar 

  • Bielejec F, Rambaut A, Suchard MA, Lemey P (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintanja R, Van de Wal RSW (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454:869–872

    Article  CAS  PubMed  Google Scholar 

  • Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K et al. (2023) Genomics of plant speciation. Plant Commun 4:100599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bombonato JR, Amaral DT, Silva GAR, Khan G, Moraes EM, da Silva Andrade SC et al. (2020) The potential of genome-wide RAD sequences for resolving rapid radiations: a case study in Cactaceae. Mol Phylogenet Evol 151:106896

    Article  PubMed  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D et al. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  Google Scholar 

  • Branner JC (1888) Notes on the Fauna of the Islands of Fernando de Noronha. Am Nat 22:861–871

    Article  Google Scholar 

  • Brown RM, Siler CD, Oliveros CH, Esselstyn JA, Diesmos AC, Hosner PA et al. (2013) Evolutionary processes of diversification in a model island archipelago. Annu Rev Ecol Evol Syst 44:411–435

    Article  Google Scholar 

  • Cariou M, Duret L, Charlat S (2016) How and how much does RAD-seq bias genetic diversity estimates? BMC Evol Biol 16:1–8

    Article  Google Scholar 

  • Carson HL (1968) The population flush and its genetic consequences. In: Lewontin RC (Ed) Population Biology and Evolution. Syracuse University Press, Syracuse, NY, p 123–137

    Google Scholar 

  • Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK et al. (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283

    Article  CAS  PubMed  Google Scholar 

  • Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JC, Soberón J (2018) Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob Ecol Biogeogr 27:156–165

    Article  Google Scholar 

  • Crawford DJ (2010) Progenitor-derivative species pairs and plant speciation. Taxon 59:1413–1423

    Article  Google Scholar 

  • Csilléry K, François O, Blum MG (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3:475–479

    Article  Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • de la Torre AR, Li Z, de Peer YV, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34:1363–1377

    Article  PubMed  Google Scholar 

  • Diver KC (2008) Not as the crow flies: assessing effective isolation for island biogeographical analysis. J Biogeogr 35:1040–1048

    Article  Google Scholar 

  • Eaton DA, Overcast I (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinf 36:2592–2594

    CAS  Google Scholar 

  • Eaton DA, Spriggs EL, Park B, Donoghue MJ (2017) Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Syst Biol 66:399–412

    PubMed  Google Scholar 

  • Emerson BC, Patiño J (2018) Anagenesis, cladogenesis, and speciation on islands. Trends Ecol Evol 33:488–491

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Palacios JM, Rijsdijk KF, Norder SJ, Otto R, de Nascimento L, Fernández-Lugo S et al. (2016) Towards a glacial-sensitive model of island biogeography. Glob Ecol Biogeogr 25:817–830

    Article  Google Scholar 

  • Flantua SG, Payne D, Borregaard MK, Beierkuhnlein C, Steinbauer MJ, Dullinger S et al. (2020) Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Glob Ecol Biogeogr 29:1651–1673

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Fordham DA, Saltré F, Haythorne S, Wigley TM, Otto-Bliesner BL, Chan KC et al. (2017) PaleoView: a tool for generating continuous climate projections spanning the last 21000 years at regional and global scales. Ecography 40:1348–1358

    Article  Google Scholar 

  • Franco FF, Jojima CL, Perez MF, Zappi DC, Taylor N, Moraes EM (2017) The xeric side of the Brazilian Atlantic Forest: The forces shaping phylogeographic structure of cacti. Ecol Evol 7:9281–9293

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco FF, Silva FS, Khan G, Bonatelli IAS, Amaral DT, Zappi DC et al. (2022) Generalizations of genetic conservation principles in islands are not always likely: a case study from a Neotropical insular cactus. Bot J Linn Soc 199:210–227

    Article  Google Scholar 

  • Frankham R, Lees, K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? In Animal Conservation Forum. Cambridge University Press, UK, pp. 255-260

  • Frey JK (1993) Modes of peripheral isolate formation and speciation. Syst Biol 42:373–381

    Article  Google Scholar 

  • Futuyma DJ (1989) Speciational trends and the role of species in macroevolution. Am Nat 134:318–321

    Article  Google Scholar 

  • García-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Article  PubMed  Google Scholar 

  • García-Verdugo C, Sajeva M, La Mantia T, Harrouni C, Msanda F, Caujapé-Castells J (2015) Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol Ecol 24:726–41

    Article  PubMed  Google Scholar 

  • García-Verdugo C, Mairal M, Monroy P, Sajeva M, Caujapé-Castells J (2017) The loss of dispersal on islands hypothesis revisited: implementing phylogeography to investigate evolution of dispersal traits in Periploca (Apocynaceae). J Biogeogr 44:2595–2606

    Article  Google Scholar 

  • García-Verdugo C, Caujapé-Castells J, Mairal M, Monroy P (2019) How repeatable is microevolution on islands? Patterns of dispersal and colonization-related plant traits in a phylogeographical context. Ann Bot 123:557–568

    Article  PubMed  Google Scholar 

  • Gamisch A (2019) Oscillayers: a dataset for the study of climatic oscillations over Plio‐Pleistocene time‐scales at high spatial‐temporal resolution. Glob Ecol Biogeogr 28:1552–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehara M, Garda AA, Werneck FP, Oliveira EF, da Fonseca EM, Camurugi F et al. (2017) Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Mol Ecol 26:4756–4771

    Article  PubMed  Google Scholar 

  • Gomes VGN, Quirino ZGM, Araujo HFP (2014) Frugivory and seed dispersal by birds in Cereus jamacaru DC. ssp. jamacaru (Cactaceae) in the Caatinga of Northeastern Brazil. Braz J Biol 74:32–40

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb LD (2004) Rethinking classic examples of recent speciation in plants. N. Phytol 161:71–82

    Article  Google Scholar 

  • Grant V (1971) Plant speciation. Columbia Univ. Press, NY and London, p 435

    Google Scholar 

  • Grant V (1989) The theory of speciational trends. Am Nat 133:604–612

    Article  Google Scholar 

  • Grossenbacher DL, Veloz SD, Sexton JP (2014) Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.). Evolution 68:1270–1280

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hung CY, Zhu C, Kittur FS, He M, Arning E, Zhang J et al. (2022) A plant-based mutant huntingtin model-driven discovery of impaired expression of GTPCH and DHFR. Cell Mol Life Sci 79:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Yamada T, Sakaguchi S, Ito M, Maki M (2022) Multiple colonizations and genetic differentiation in goldenrod populations on recently formed nearshore islands. J Biogeogr 49:836–852

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA 111:15296–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledru M, Araújo F (2023) The Restinga and Cerrado pathways, two ancient biotic corridors in the Neotropics. Front Biogeogr 15:e59398

    Article  Google Scholar 

  • Leite YL, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC et al. (2016) Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proc Natl Acad Sci USA 113:1008–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leutner B, Horning N (2017) Rstoolbox: Tools for Remote Sensing Data Analysis. R Package Version 0.1.8. URL https://cran.r-project.org/web/packages/RStoolbox/index.html. Accessed 30 November 2020.

  • Losos JB, Glor RE (2003) Phylogenetic comparative methods and the geography of speciation. Trends Ecol Evol 18:220–227

    Article  Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836

    Article  CAS  PubMed  Google Scholar 

  • Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol 23:2178–2192

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–46

    Article  PubMed  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF et al. (2017) Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 17:142–152

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Duan W, Cui Y, Zhang J, Zhu D, Zhang M et al. (2022) 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress. BMC Genom 23:369

    Article  CAS  Google Scholar 

  • Luu K, Bazin E, Blum MG (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press.

  • Majure LC, Barrios D, Díaz E, Zumwalde BA, Testo W, Negrón-Ortíz V (2021) Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). Am J Bot 108:200–215

    Article  PubMed  Google Scholar 

  • Marques MC, Silva SM, Liebsch D (2015) Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns and conservation status. Rev Bras Bot 38:1–18

    Article  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (Eds) Evolution as a process. Collier Books, New York, p 157–180

    Google Scholar 

  • Maya-Lastra CA, Eaton DAR (2021) Genetic incompatibilities do not snowball in a demographic model of speciation. Biorxiv. https://doi.org/10.1101/2021.02.23.432472.

  • Méndez‐Castro FE, Mendieta-Leiva G, Rao D, Bader MY (2020) Island‐biogeographic patterns of spider communities on epiphytes depend on differential space use among functional groups. J Biogeogr 47:1322–1332

    Article  Google Scholar 

  • Menezes MO, Taylor NP, Zappi DC, Loiola MIB (2015) Spines and ribs of Pilosocereus arrabidae (Lem.) Byles and GD Rowley and allies (Cactaceae): ecologic or genetic traits? Flora 214:44–49

    Article  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohriak W (2020) Genesis and evolution of the South Atlantic volcanic islands offshore Brazil. Geo-Mar Lett 40:1–33

    Article  CAS  Google Scholar 

  • Nazareno AG, Bemmels JB, Dick CW, Lohmann LG (2017) Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17:1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Nosil P (2008) Ernst Mayr and the integration of geographic and ecological factors in speciation. Biol J Linn Soc Lond 95:26–46

    Article  Google Scholar 

  • Nosil P (2009) Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63:1902–1912

    Article  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG et al. (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544

    Article  Google Scholar 

  • Pan W, Wu Y, Xie Q (2019) Regulation of ubiquitination is central to the phosphate starvation response. Trends Plant Sci 24:755–769

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou A, Knowles LL (2015) Genomic tests of the species-pump hypothesis: recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands. Evolution 69:1501–1517

    Article  PubMed  Google Scholar 

  • Patiño J, Whittaker RJ, Borges PA, Fernández-Palacios JM, Ah-Peng C, Araújo MB et al. (2017) A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J Biogeogr 44:963–983

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al. (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Peres EA, Pinto-da-Rocha R, Lohmann LG, Michelangeli FA, Miyaki CY, Carnaval AC (2020) Patterns of species and lineage diversity in the Atlantic Rainforest of Brazil. In: Rull V, Carnaval AC (Eds) Neotropical diversification: patterns and processes. Springer, Cham, p 415–447

    Chapter  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pichersky E, Raguso RA (2018) Why do plants produce so many terpenoid compounds? N. Phytol 220:692–702

    Article  Google Scholar 

  • Pinheiro F, de Barros F, Palma-Silva C, Fay MF, LexerC, Cozzolino S (2011) Phylogeography and genetic differentiation along the distributional range of the orchid Epidendrum fulgens: A Neotropical coastal species not restricted to glacial refugia. J Biogeogr 38:1923–1935

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Fregonezi AM, Fregonezi JN, Cybis GB, Fagundes NJ, Bonatto SL, Freitas LB (2015) Were sea level changes during the Pleistocene in the South Atlantic Coastal Plain a driver of speciation in Petunia (Solanaceae)? BMC Evol Biol 15:1–11

    Article  Google Scholar 

  • Rieseberg LH, Brouillet L (1994) Are many plant species paraphyletic? Taxon 43:21–32

    Article  Google Scholar 

  • Rijsdijk KF, Hengl T, Norder SJ, Otto R, Emerson BC, Ávila SP et al. (2014) Quantifying surface-area changes of volcanic islands driven by Pleistocene sea-level cycles: Biogeographical implications for the Macaronesian archipelagos. J Biogeogr 41:1242–1254

    Article  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–41

    Article  CAS  PubMed  Google Scholar 

  • Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM (2021) An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 30:2495–2510

    Article  PubMed  Google Scholar 

  • Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269:9–17

    Article  Google Scholar 

  • Smirnoff N (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med 122:116–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snir S, Rao S (2012) Quartet MaxCut: a fast algorithm for amalgamating quartet trees. Mol Phylog Evol 62:1–8

    Article  Google Scholar 

  • Soares MO, Lemos VB, Kikuchi RKP (2011) Aspectos biogeomorfológicos do Atol das Rocas, Atlântico Sul Equatorial. Rev Bras Biocienc 41:85–94

    Google Scholar 

  • Solís-Lemus C, Ané C (2016) Inferringphylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet 12:e1005896

    Article  PubMed  PubMed Central  Google Scholar 

  • Solís-Lemus C, Bastide P, Ané C (2017) PhyloNetworks: a package for phylogenetic networks. Mol Biol Evol 34:3292–3298

    Article  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuessy TF, Crawford DJ, Marticorena C (1990) Patterns of phylogeny in the endemic vascular Flora of the Juan Fernandez Islands, Chile. Syst Bot 15:338–346

    Article  Google Scholar 

  • Stuessy TF, Jakubowsky G, Salguero-Gómez R, Pfosser M, Schluter PM, Fer T et al. (2006) Anagenetic evolution in island plants. J Biogeogr 33:1259–1265

    Article  Google Scholar 

  • Stuessy TF, Takayama K, López-Sepúlveda P, Crawford DJ (2014) Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. Bot J Linn Soc 174:276–288

    Article  PubMed  Google Scholar 

  • Takayama K, López-Sepúlveda P, Greimler J, Crawford DJ, Peñailillo P, Baeza M et al. (2015) Genetic consequences of cladogenetic vs. anagenetic speciation in endemic plants of oceanic islands. AoB Plants 7:plv102

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan DJ, Gyllenhaal EF, Andersen MJ (2022) PleistoDist: a toolbox for visualising and quantifying the effects of Pleistocene sea-level change on island archipelagos. Methods Ecol Evol 14:496–504

    Article  Google Scholar 

  • Taylor NP (2021) Notes on cultivated Pereskia quisqueyana and related species (Cactaceae). Bradleya 2021:69–110

    Article  Google Scholar 

  • Taylor NP, Hoxey P, Gdaniec A (2021) Dendrocereus Britton and Rose–one species or two? Bradleya 2021:16–22

    Article  Google Scholar 

  • Taylor NP, Zappi DC (2004) Cacti of eastern Brazil. Royal Botanic Gardens, Kew

    Google Scholar 

  • Templeton AR (1981) Mechanisms of speciation-a population genetic approach. Annu Rev Ecol Evol Syst 12:23–48

    Article  Google Scholar 

  • Templeton AR (2008) The reality and importance of founder speciation in evolution. Bioessays 30:470–479

    Article  PubMed  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework. https://cran.r-project.org/web/packages/biomod2/index.html

  • Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091

    Article  Google Scholar 

  • Vital H (2014) The north and northeast Brazilian tropical shelves. In: Chiocci FL, Chivas AR (Eds.) Continental shelves of the world: Their evolution during the last glacio-eustatic cycle. Geological Society, Memoirs, London, p 35–46

    Google Scholar 

  • Wang T, McFarlane HE, Persson S (2016) The impact of abiotic factors on cellulose synthesis. J Exp Bot 67:543–552

    Article  CAS  PubMed  Google Scholar 

  • Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV (2017) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 40:817–828

    Article  Google Scholar 

  • Weigelt P, Steinbauer MJ, Cabral JS, Kreft H (2016) Late Quaternary climate change shapes island biodiversity. Nature 532:99–102

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA (2017) Island biogeography: taking the long view of nature’s laboratories. Science 357:6354

    Article  Google Scholar 

  • Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma 19:15–30

    Article  Google Scholar 

  • Zhang L, Li M, Yan P, Fu J, Zhang L, Li X et al. (2021) A novel adenylate isopentenyltransferase 5 regulates shoot branching via the ATTTA motif in Camellia sinensis. BMC Plant Biol 21:1–14

    Article  Google Scholar 

  • Zhao YJ, Yin GS, Pan YZ, Tian B, Gong X (2020) Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peonies (Paeonia delavayiand Paeonia ludlowii). Front Genet 11:595334

    Article  PubMed  Google Scholar 

  • Zulfiqar F, Ashraf M (2021) Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Mol Biol 105:11–41

    Article  CAS  PubMed  Google Scholar 

  • Zhbannikov IY, Hunter SS, Foster JA, Settles ML (2017) SeqyClean: a pipeline for high-throughput sequence data preprocessing. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB ’17). ACM, New York, NY, USA, p 407–416. https://doi.org/10.1145/3107411.3107446

Download references

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for a visiting scholar fellowship to FFF (2019/10341-6) to a stay at Columbia University, NY (Feb/Mar 2020). This work was supported by grants from FAPESP to FFF (2014/25227-0 and 2020/15161-3) and to IASB (2020/16162-3); and from the National Council for Scientific and Technological Development (CNPq) (402209/2016-8 to FFF). We thank the fellowships from CNPq to EMM (303940/2019-0) and DCZ (305301/2018-7), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001) to DTA. For sampling Cereus insularis, we had support from Fernando de Noronha Marine National Park (ICMBIO/PARNAMAR) and the governmental administration of Fernando de Noronha (DEFN). We thank the three anonymous reviewers for their critical comments on the paper.

Author information

Authors and Affiliations

Authors

Contributions

FFF, DTA and DE conceived the idea. DE, DTA, FFF, JM and IASB performed data collection and analyses. FFF and DE led the writing. DZ, EMM, NT, DTA and IASB contributed to many conceptions and writing. All authors contributed to the intellectual development of the paper, made multiple revisions, and approved the final draft. Funding acquisition, FFF.

Corresponding author

Correspondence to Fernando Faria Franco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Sampling was carried out in accordance with Brazilian law through special permits provided to FFF (permit from Chico Mendes Biodiversity Conservation Institute, SISBIO n° 38141-1).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Dario Grattapaglia.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, F.F., Amaral, D.T., Bonatelli, I.A.S. et al. A historical stepping-stone path for an island-colonizing cactus across a submerged “bridge” archipelago. Heredity (2024). https://doi.org/10.1038/s41437-024-00683-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41437-024-00683-4

Search

Quick links