Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Age and sex-based impacts of maternal iron deficiency on offspring’s cognitive function and anemia: A systematic review

Abstract

Iron deficiency is a recognized global health concern, particularly impactful during pregnancy where the mother serves as the primary source of iron for the developing fetus. Adequate maternal iron levels are crucial for fetal growth and cognitive development. This review investigates the correlation between maternal iron deficiency and cognitive impairment and anemia in offspring, considering age and gender differentials. PubMed, ScienceDirect, and Google Scholar databases were queried using keywords "maternal," "iron," "gender/sex," and "cognition." The review included studies on human and animal subjects where maternal iron deficiency was the exposure and offspring cognitive function and anemia were outcomes. Out of 1139 articles screened, fourteen met inclusion criteria. Twelve studies highlighted cognitive deficits in offspring of iron-deficient mothers, with females generally exhibiting milder impairment compared to males. Additionally, two studies noted increased anemia prevalence in offspring of iron-deficient mothers, particularly affecting males and younger individuals. The findings suggest that male offspring are at higher risk of both anemia and cognitive dysfunction during youth, while females face increased risks in adulthood. Thus, maternal iron deficiency elevates the likelihood of anemia and cognitive impairments in offspring, underscoring the importance of addressing maternal iron status for optimal child health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart detailing the study selection procedure using the PRISMA guideline [42].

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supporting information of this article and from the corresponding author upon request.

References

  1. Lal A. Iron in health and disease: an update. Indian J Pediatr. 2020;87(1):58–65.

    Article  PubMed  Google Scholar 

  2. Testa U. Recent developments in the understanding of iron metabolism. Hematol J. 2002;3(2):63–89.

    Article  CAS  PubMed  Google Scholar 

  3. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164.

    PubMed  PubMed Central  Google Scholar 

  4. Cerami C. Iron nutriture of the fetus, neonate, infant, and child. Ann Nutr Metab. 2017;71(Suppl. 3):8–14.

    Article  CAS  PubMed  Google Scholar 

  5. Rukuni R, Knight M, Murphy MF, Roberts D, Stanworth SJ. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria. BMC Pregnancy Childbirth. 2015;15(1):1–11.

    Article  Google Scholar 

  6. Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C, et al. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2012;156(5):588–600.

    Article  CAS  PubMed  Google Scholar 

  7. Ross A, Caballero B, Cousins R, Tucker K, Ziegler T, Katherine Camacho Carr C. Modern nutrition in health and disease (Modern Nutrition in Health & Disease (Shils)). Copy Right Lippincott Williams Wilkins. 2012:248-70.

  8. Krebs NF, Lozoff B, Georgieff MK. Neurodevelopment: the impact of nutrition and inflammation during infancy in low-resource settings. Pediatrics. 2017;139(Supplement 1):S50–S8.

    Article  PubMed  Google Scholar 

  9. Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A. Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol. 2006;134(5):532–43.

    Article  CAS  PubMed  Google Scholar 

  10. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191–200.

    Article  CAS  PubMed  Google Scholar 

  12. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197–213.

    Article  CAS  PubMed  Google Scholar 

  13. Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7(2):232–43.

    Article  PubMed  Google Scholar 

  14. Sangkhae V, Fisher AL, Wong S, Koenig MD, Tussing-Humphreys L, Chu A, et al. Effects of maternal iron status on placental and fetal iron homeostasis. J Clin Investig. 2021;130(2).

  15. Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron metabolism and brain development in premature infants. Front Physiol. 2019;10:463.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab. 2015;35(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira A, Neves P, Gozzelino R. Multilevel impacts of Iron in the brain: the cross talk between neurophysiological mechanisms, cognition, and social behavior. Pharmaceuticals. 2019;12(3):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bezerra CT, Grande AJ, Galvão VK, Santos DHMd, Atallah ÁN, Silva V. Assessment of the strength of recommendation and quality of evidence: GRADE checklist. A descriptive study. Sao Paulo Med J. 2022;140:829–36.

    PubMed  PubMed Central  Google Scholar 

  19. Magrin GL, Strauss FJ, Benfatti CAM, Maia LC, Gruber R. Effects of short-chain fatty acids on human oral epithelial cells and the potential impact on periodontal disease: a systematic review of in vitro studies. Int J Mol Sci. 2020;21(14):4895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Findlay E, Ng KT, Reid RL, Armstrong SM. The effect of iron deficiency during development on passive avoidance learning in the adult rat. Physiol Behav. 1981;27(6):1089–96.

    Article  CAS  PubMed  Google Scholar 

  21. Eseh R, Zimmerberg B. Age-dependent effects of gestational and lactational iron deficiency on anxiety behavior in rats. Behav Brain Res. 2005;164(2):214–21.

    Article  CAS  PubMed  Google Scholar 

  22. Jougleux J-L, Rioux FM, Church MW, Fiset S, Jacques H, Surette ME. Dietary LC-PUFA in iron-deficient anaemic pregnant and lactating guinea pigs induce minor defects in the offsprings’ auditory brainstem responses. Nutr Neurosci. 2016;19(10):447–60.

    Article  CAS  PubMed  Google Scholar 

  23. Boksa P, Zhang Y, Nouel D, Wong A, Wong TP. Early development of Parvalbumin-, somatostatin-, and cholecystokinin-expressing neurons in rat brain following prenatal immune activation and maternal Iron deficiency. Dev Neurosci. 2016;38(5):342–53.

    Article  CAS  PubMed  Google Scholar 

  24. Vieyra-Reyes P, Millán-Aldaco D, Palomero-Rivero M, Jiménez-Garcés C, Hernández-González M, Caballero-Villarraso J. An iron-deficient diet during development induces oxidative stress in relation to age and gender in Wistar rats. J Physiol Biochem. 2017;73(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  25. Moos T, Skjørringe T, Thomsen LL. Iron deficiency and iron treatment in the fetal developing brain–a pilot study introducing an experimental rat model. Reprod Health. 2018;15(1):117–20.

    Google Scholar 

  26. Rees WD, Hay SM, Hayes HE, Stevens VJ, Gambling L, McArdle HJ. Iron deficiency during pregnancy and lactation modifies the fatty acid composition of the brain of neonatal rats. J Dev Orig Health Dis. 2020;11(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh H-Y, Chen Y-C, Hsu M-H, Yu H-R, Su C-H, Tain Y-L, et al. Maternal iron deficiency programs offspring cognition and its relationship with gastrointestinal microbiota and metabolites. Int J Environ Res Public Health. 2020;17(17):6070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amin SB, Orlando M, Wang H. Latent iron deficiency in utero is associated with abnormal auditory neural myelination in≥ 35 weeks gestational age infants. J Pediatr. 2013;163(5):1267–71.

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Wang H, Chang S, Zhao L, Fu P, Yu W, et al. The influence of malnutrition and micronutrient status on anemic risk in children under 3 years old in poor areas in China. PloS one. 2015;10(10):e0140840.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Berglund SK, Torres-Espínola FJ, García-Valdés L, Segura MT, Martínez-Zaldívar C, et al. The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br J Nutr. 2017;118(7):533–40.

    Article  CAS  PubMed  Google Scholar 

  31. Prado EL, Sebayang SK, Apriatni M, Adawiyah SR, Hidayati N, Islamiyah A, et al. Maternal multiple micronutrient supplementation and other biomedical and socioenvironmental influences on children’s cognition at age 9–12 years in Indonesia: follow-up of the SUMMIT randomised trial. Lancet Glob Health. 2017;5(2):e217–e28.

    Article  PubMed  Google Scholar 

  32. Wainstock T, Walfisch A, Sergienko R, Sheiner E. Maternal anemia and pediatric neurological morbidity in the offspring–Results from a population based cohort study. Early Hum Dev. 2019;128:15–20.

    Article  PubMed  Google Scholar 

  33. Riahi SM, Mohammadi M, Fakhri Y, Pordanjani SR, Soleimani F, Saadati HM. Prevalence and determinant factors of anemia in children aged 6–12 months after starting an iron supplement in the east of Iran. Arch de Pediatr. 2019;26(6):347–51.

    Article  Google Scholar 

  34. Tenorio-Laranga J, Männistö PT, Karayiorgou M, Gogos JA, García-Horsman JA. Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase. Biochem Pharmacol. 2009;77(9):1541–52.

    Article  CAS  PubMed  Google Scholar 

  35. Bae S, Zhang L. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther. 2005;315(3):1125–35.

    Article  CAS  PubMed  Google Scholar 

  36. Jackson RT, Hamad NA, Al-Somaie M, Guoad NA, Prakash P. Gender and age differences in anemia prevalence during the lifecycle in Kuwait. Ecol Food Nutr. 2004;43(1-2):61–75.

    Article  Google Scholar 

  37. Antunes H, Santos C, Carvalho S, Gonçalves S, Costa-Pereira A. Male gender is an important clinical risk factor for iron deficiency in healthy infants. e-SPEN J. 2012;7(6):e219–e22.

    Article  Google Scholar 

  38. Felt BT, Beard JL, Schallert T, Shao J, Aldridge JW, Connor JR, et al. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res. 2006;171(2):261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Algarín C, Peirano P, Garrido M, Pizarro F, Lozoff B. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2):217–23.

    Article  PubMed  Google Scholar 

  40. Zhukovskaya E, Karelin A, Rumyantsev A Neurocognitive Dysfunctions in Iron Deficiency Patients. IntechOpen: London, UK. 2019:83-113.

  41. Mahmassani, HA, Switkowski, KM, Scott, TM, Johnson, EJ, Rifas-Shiman, SL, Oken, E, et al. Maternal diet quality during pregnancy and child cognition and behavior in a US cohort. 2022:115(1), 128-41.

  42. Rethlefsen ML, Page MJ. PRISMA 2020 and PRISMA-S: common questions on tracking records and the flow diagram. J Med Libr Assoc. 2022;110(2):253.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SF: conceptualization; literature search, data extraction, writing and drafting. KOS: literature search, data extraction, writing and drafting. KGI, IM, MBB and MBA: data synthesis, quality assessment, review and editing, supervision. AYA and MUI: data synthesis, quality assessment, review and editing, supervision, project management and conflict resolution.

Corresponding author

Correspondence to Mustapha Umar Imam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faruk, S., Sanusi, K.O., Ibrahim, K.G. et al. Age and sex-based impacts of maternal iron deficiency on offspring’s cognitive function and anemia: A systematic review. Eur J Clin Nutr (2024). https://doi.org/10.1038/s41430-024-01423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41430-024-01423-x

Search

Quick links