Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Synthesis of sequence-controlled polymers via sequential multicomponent reactions and interconvertible hybrid copolymerizations

Abstract

Synthesizing artificial polymers with precise sequence structures, such as their biological analogues, is a serious challenge and of great importance in polymer science. Recently, step-growth polymerization and chain growth polymerization have been the main synthesis methods for preparing artificial sequence-regulated polymers. However, it is difficult to obtain sequence-controlled polymers with sufficient molecular diversity via step-growth polymerization; on the other hand, chain-growth polymerization generally requires laborious repetitive monomer feeding. In this focus review, the sequential multicomponent reactions for preparing periodic sequence-controlled polymers with sufficient molecular diversity and complexity and the interconvertible hybrid copolymerizations producing hybrid multiblock copolymers rapidly in one pot are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:628.

    CAS  Google Scholar 

  2. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski, K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024.

  3. Michaudel Q, Fors BP. Storing information at the molecular level: efficient synthesis of “Barcode” Polymers. Chem. 2016;1:23.

    CAS  Google Scholar 

  4. Lutz JF. Sequence-controlled polymerizations: the next Holy Grail in polymer science?. Polym Chem. 2010;1:55–62.

    CAS  Google Scholar 

  5. Qu CK, He JP. Recent developments in the synthesis of sequence controlled polymers. Sci China Chem. 2015;58:1651–62.

    CAS  Google Scholar 

  6. Mutlu H, Lutz JF. Reading polymers: sequencing of natural and synthetic macromolecules. Angew Chem-Int Ed. 2014;53:13010–9.

    CAS  Google Scholar 

  7. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. JACS. 1963;85:2149–54.

    CAS  Google Scholar 

  8. Porel M, Alabi CA. Sequence-defined polymers via orthogonal Allyl acrylamide building blocks. JACS. 2014;136:13162–5.

    CAS  Google Scholar 

  9. Porel M, Thornlow DN, Phan NN, Alabi CA. Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction. Nat Chem. 2016;8:591–7.

    Google Scholar 

  10. Espeel P, Carrette LLG, Bury K, Capenberghs S, Martins JC, Du Prez FE, et al. Multifunctionalized sequence-defined oligomers from a single building block. Angew Chem-Int Ed 2013;52:13261–4.

    CAS  Google Scholar 

  11. Solleder SC, Meier MAR. Sequence control in polymer chemistry through the passerini three-component reaction. Angew Chem-Int Ed. 2014;53:711–4.

    CAS  Google Scholar 

  12. Yang CJ, Flynn JP, Niu J. Facile synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew Chem-Int Ed. 2018;57:16194–9.

    CAS  Google Scholar 

  13. Barnes JC, Ehrlich DJC, Gao AX, Leibfarth FA, Jiang YV, Zhou E, et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat Chem. 2015;7:810–5.

    CAS  PubMed  Google Scholar 

  14. Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz JF. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat Commun. 2015;6:7237.

  15. Martens S, den Begin J, Madder A, Du Prez FE, Espeel P. Automated synthesis of monodisperse oligomers, featuring sequence control and tailored functionalization. JACS. 2016;138:14182–5.

    CAS  Google Scholar 

  16. Huang ZH, Zhao JF, Wang ZM, Meng FY, Ding KS, Pan XQ, et al. Combining orthogonal chain-end deprotections and thiol-maleimide michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew Chem-Int Ed 2017;56:13612–7.

    CAS  Google Scholar 

  17. Zhang JH, Matta ME, Hillmyer MA. Synthesis of sequence-specific vinyl copolymers by regioselective ROMP of multiply substituted cyclooctenes. Acs Macro Lett. 2012;1:1383–7.

    CAS  Google Scholar 

  18. Gutekunst WR, Hawker CJ. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. JACS. 2015;137:8038–41.

    CAS  Google Scholar 

  19. Satoh K, Ozawa S, Mizutani M, Nagai K, Kamigaito M. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun. 2010;1:6.

  20. Wei B, Li WZ, Zhao ZJ, Qin AJ, Hu RR, Tang BZ. Metal-free multicomponent tandem polymerizations of alkynes, amines, and formaldehyde toward structure- and sequence-controlled luminescent polyheterocycles. JACS. 2017;139:5075–84.

    CAS  Google Scholar 

  21. Gody G, Maschmeyer T, Zetterlund PB, Perrier S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat Commun. 2013;4:2505.

  22. Ji YX, Zhang LQ, Gu X, Zhang W, Zhou NC, Zhang ZB, et al. Sequence-controlled polymers with furan-protected maleimide as a latent monomer. Akngewandte Chem-Int Ed. 2017;56:2328–33.

    CAS  Google Scholar 

  23. Pfeifer S, Lutz JF. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. JACS. 2007;129:9542.

    CAS  Google Scholar 

  24. Yang LC, Ma HW, Han L, Liu PB, Shen HY, Li C, et al. Sequence features of sequence-controlled polymers synthesized by 1,1-diphenylethylene derivatives with similar reactivity during living anionic polymerization. Macromolecules. 2018;51:5891–903.

    CAS  Google Scholar 

  25. Matsumoto S, Kanazawa A, Kanaoka S, Aoshima S. Tandem reaction of cationic copolymerization and concertedly induced Hetero-Diels-Alder reaction preparing sequence-regulated polymers. JACS. 2017;139:7713–6.

    CAS  Google Scholar 

  26. Engelis NG, Anastasaki A, Nurumbetov G, Truong NP, Nikolaou V, Shegiwal A, et al. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat Chem. 2017;9:171–8.

    CAS  PubMed  Google Scholar 

  27. Zamfir M, Lutz JF. Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nature Commun. 2012;3:1138.

  28. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. Sequence regulated poly(ester-amide)s based on Passerini reaction. Acs Macro Lett. 2012;1:1300–3.

    CAS  Google Scholar 

  29. Lee IH, Kim H, Choi TL. Cu-catalyzed multicomponent polymerization to synthesize a library of Poly(N-sulfonylamidines). JACS. 2013;135:3760–3.

    CAS  Google Scholar 

  30. Mao TF, Liu GQ, Wu HB, Wei Y, Gou YZ, Wang J, et al. High throughput preparation of UV-protective polymers from essential oil extracts via the Biginelli reaction. JACS. 2018;140:6865–72.

    CAS  Google Scholar 

  31. Han T, Deng HQ, Qiu ZJ, Zhao Z, Zhang HK, Zou H, et al. Facile multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. JACS. 2018;140:5588–98.

    CAS  Google Scholar 

  32. Zhang Z, You YZ, Hong CY. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence-controlled polymers. Macromol Rapid Commun. 2018;39:1800362.

    Google Scholar 

  33. Espeel P, Goethals F, Du Prez FE. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. JACS. 2011;133:1678–81.

    CAS  Google Scholar 

  34. Zhang Z, You YZ, Wu DC, Hong CY. A novel multicomponent reaction and its application in sequence-ordered functional polymer synthesis. Polymer. 2015;64:221–6.

    CAS  Google Scholar 

  35. Zhang Z, You YZ, Wu DC, Hong CY. Syntheses of sequence-controlled polymers via consecutive multicomponent reactions. Macromolecules. 2015;48:3414–21.

    CAS  Google Scholar 

  36. Zhang Z, Tan ZB, Hong CY, Wu DC, You YZ. One-pot sequential multicomponent reaction and a multicomponent polymerization method for the synthesis of topologically different polymers. Polym Chem. 2016;7:1468–74.

    CAS  Google Scholar 

  37. Yang L, Zhang Z, Cheng BF, You YZ, Wu DC, Hong CY. Two tandem multicomponent reactions for the synthesis of sequence-defined polymers. Sci China Chem. 2015;58:1734–40.

    CAS  Google Scholar 

  38. Yan JJ, Wang D, Wu DC, You YZ. Synthesis of sequence-ordered polymers via sequential addition of monomers in one pot. Chem Commun. 2013;49:6057–9.

    CAS  Google Scholar 

  39. Yu L, Zhang Z, You YZ, Hong CY. Synthesis of sequence-controlled polymers via sequential thiol-ene and amino-yne click reactions in one pot. Eur Polym J. 2018;103:80–7.

    CAS  Google Scholar 

  40. Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY. Sequential Michael addition thiol-ene and radical-mediated thiol-ene reactions in one-pot produced sequence-ordered polymers. Polym Chem. 2015;6:1527–32.

    CAS  Google Scholar 

  41. He BZ, Su HF, Bai TW, Wu YW, Li SW, Gao M, et al. Spontaneous Amino-yne Click Polymerization: a powerful tool toward Regio- and Stereospecific Poly(beta-aminoacrylate)s. JACS. 2017;139:5437–43.

    CAS  Google Scholar 

  42. Soejima T, Satoh K, Kamigaito M. Main-chain and side-chain sequence-regulated Vinyl copolymers by iterative atom transfer radical additions and 1:1 or 2:1 alternating radical copolymerization. JACS. 2016;138:944–54.

    CAS  Google Scholar 

  43. Ojika M, Satoh K, Kamigaito M. BAB-random-C monomer sequence via radical terpolymerization of Limonene(A), Maleimide(B), and Methacrylate(C): terpene polymers with randomly distributed periodic sequences. Angew Chem-Int Ed. 2017;56:1789–93.

    CAS  Google Scholar 

  44. Huang ZX, Noble BB, Corrigan N, Chu YY, Satoh K, Thomas DS, et al. Discrete and stereospecific oligomers prepared by sequential and alternating single unit monomer insertion. JACS. 2018;140:13392–406.

    CAS  Google Scholar 

  45. Xu JT, Fu CK, Shanmugam S, Hawker CJ, Moad G, Boyer C. Synthesis of discrete oligomers by sequential PET-RAFT single-unit monomer insertion. Angew Chem-Int Ed. 2017;56:8376–83.

    CAS  Google Scholar 

  46. Yang HJ, Xu JB, Pispas S, Zhang GZ. Hybrid copolymerization of epsilon-caprolactone and methyl methacrylate. Macromolecules. 2012;45:3312–7.

    CAS  Google Scholar 

  47. Xu JB, Yang HJ, Zhang GZ. Synthesis of Poly(epsilon-caprolactone-co-methacrylic acid) copolymer via phosphazene-catalyzed hybrid copolymerization. Macromol Chem Phys. 2013;214:378–85.

    CAS  Google Scholar 

  48. Song QL, Hu SY, Zhao JP, Zhang GZ. Organocatalytic copolymerization of mixed type monomers. Chin J Polym Sci. 2017;35:581–601.

    CAS  Google Scholar 

  49. Simionescu CI, Grigoras M, Bicu E, Onofrei G. Spontaneous copolymerization of 2-Methyl-2-Oxazoline and N-Phenyl Maleimide. Polym Bull. 1985;14:79–83.

    CAS  Google Scholar 

  50. Hagiwara T, Takeda M, Hamana H, Narita T. Copolymerization of N-phenylmaleimide and propylene-oxide initiated with organozinc compounds. Macromolecules. 1989;22:2025–6.

    CAS  Google Scholar 

  51. Kanazawa A, Kanaoka S, Aoshima S. Concurrent cationic vinyl-addition and ring-opening copolymerization using B(C6F5)(3) as a catalyst: copolymerization of vinyl ethers and isobutylene oxide via crossover propagation reactions. JACS. 2013;135:9330–3.

    CAS  Google Scholar 

  52. Shirouchi T, Kanazawa A, Kanaoka S, Aoshima S. Controlled cationic copolymerization of vinyl monomers and cyclic acetals via concurrent vinyl-addition and ring-opening mechanisms. Macromolecules. 2016;49:7184–95.

    CAS  Google Scholar 

  53. Zhang Z, Xia L, Zeng TY, Wu DC, Zhang WJ, Hong CY, et al. Hybrid copolymerization via mechanism interconversion between radical vinyl-addition and anion ring-opening polymerization. Polym Chem. 2019;10:2117–25.

    CAS  Google Scholar 

  54. Zhang Z, Zeng TY, Xia L, Hong CY, Wu DC, You YZ. Synthesis of polymers with on-demand sequence structures via dually switchable and interconvertible polymerizations. Nat Commun. 2018;9:2577.

    PubMed  PubMed Central  Google Scholar 

  55. Nagai A, Koike N, Kudo H, Nishikubo T. Controlled thioacyl group transfer (TAGT) polymerization of cyclic sulfide: novel approach to AB diblock copolymers by the combination of RAFT and TAGT polymerizations. Macromolecules. 2007;40:8129–31.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Key R&D Program of China (2017YFA0205601), the National Natural Science Funds for Distinguished Young Scholars (21525420, 51625305), the National Natural Science Foundation of China (21774113 and 21801234), and the project funded by the China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze Zhang or Ye-Zi You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Zhang, Z. & You, YZ. Synthesis of sequence-controlled polymers via sequential multicomponent reactions and interconvertible hybrid copolymerizations. Polym J 52, 33–43 (2020). https://doi.org/10.1038/s41428-019-0266-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0266-4

This article is cited by

Search

Quick links