Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization

Abstract

The chain-growth polymerization mechanism is essentially unsuitable for sequence control due to the statistical propagation feature. However, the development of reversible-deactivation radical polymerization (RDRP) has opened the door to sequence control for carbon–carbon bond-based synthetic polymers carrying various pendant groups on their repeating units. Our group has developed some methodologies and concepts for the synthesis of sequence-controlled oligomers/polymers via radical polymerization. It is crucial to introduce some additional components into the initiator and/or the monomer for RDRP, and in most cases, these components are designed to be removed or transformable afterward. This review focuses on the methodologies we have recently developed for sequence regulation via radical polymerization processes and the sequence-oriented properties of the resultant sequence-controlled polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis JM, Roberts RK, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

  2. Moad G, Solomon DH. The chemistry in radical polymerization. 2nd ed. Oxford, UK: Elsevier; 2006.

    Google Scholar 

  3. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:1238149.

    Article  Google Scholar 

  4. Ouchi M, Sawamoto M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J. 2018;50:83–94.

    Article  CAS  Google Scholar 

  5. Klumperman B. Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem. 2010;1:558–62.

    Article  CAS  Google Scholar 

  6. Jenkins AD, Jones RG, Moad G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem. 2010;82:483–91.

    Article  CAS  Google Scholar 

  7. Wang JS, Matyjaszewski K. Controlled living radical polymerization. Atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  8. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of Methyl-methacrylate with the carbon-Tetrachloride dichlorotris(triphenylphosphine)ruthenium(II) methylaluminum bis(2,6-Di-Tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules. 1995;28:1721–3.

    Article  CAS  Google Scholar 

  9. Minisci F. Free-radical additions to olefins in the presence of redox systems. Acc Chem Res. 1975;8:165–71.

    Article  CAS  Google Scholar 

  10. Pintauer T, Matyjaszewski K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem Soc Rev. 2008;37:1087–97.

    Article  CAS  Google Scholar 

  11. Satoh K, Ozawa S, Mizutani M, Nagai K, Kamigaito M. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun. 2010;1:6.

    Article  Google Scholar 

  12. Vandenbergh J, Reekmans G, Adriaensens P, Junkers T. Synthesis of sequence-defined acrylate oligomers via photo-induced copper-mediated radical monomer insertions. Chem Sci. 2015;6:5753–61.

    Article  CAS  Google Scholar 

  13. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:14.

    Article  Google Scholar 

  14. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

    Article  CAS  Google Scholar 

  15. Ida S, Terashima T, Ouchi M, Sawamoto M. Selective radical addition with a designed heterobifunctional halide: a primary study toward sequence-controlled polymerization upon template effect. J Am Chem Soc. 2009;131:10808–9.

    Article  CAS  Google Scholar 

  16. Ida S, Ouchi M, Sawamoto M. Template-assisted selective radical addition toward sequence-regulated polymerization: lariat capture of target monomer by template initiator. J Am Chem Soc. 2010;132:14748–50.

    Article  CAS  Google Scholar 

  17. Hibi Y, Ouchi M, Sawamoto M. A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization. Nat Communs. 2016;7:11604.

    Article  Google Scholar 

  18. Oh DY, Ouchi M, Nakanishi T, Ono H, Sawamoto M. Iterative radical addition with a special monomer carrying bulky and convertible pendant: a new concept toward controlling the sequence for vinyl polymers. ACS Macro Lett. 2016;5:745–9.

    Article  CAS  Google Scholar 

  19. Oh D, Sawamoto M, Ouchi M. Precise control of single unit monomer radical addition with a bulky tertiary methacrylate monomer toward sequence-defined oligo- or poly(methacrylate)s via the iterative process. Polym Chem. 2019;10:1998–2003.

    Article  CAS  Google Scholar 

  20. Malay AD, Arakawa K, Numata K. Analysis of repetitive amino acid motifs reveals the essential features of spider dragline silk proteins. PLoS ONE. 2017;12:e0183397.

    Article  Google Scholar 

  21. Tsuchiya K, Kurokawa N, Gimenez-Dejoz J, Gudeangadi PG, Masunaga H, Numata K. Periodic introduction of aromatic units in polypeptides via chemoenzymatic polymerization to yield specific secondary structures with high thermal stability. Polym J. 2019;51:1287–98.

    Article  CAS  Google Scholar 

  22. Nishimori K, Ouchi M. AB-alternating copolymers via chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chem Commun. 2020;56:3473–83.

    Article  CAS  Google Scholar 

  23. Pasini D, Takeuchi D. Cyclopolymerizations: synthetic tools for the precision synthesis of macromolecular architectures. Chem Rev. 2018;118:8983–9057.

    Article  CAS  Google Scholar 

  24. Hibi Y, Tokuoka S, Terashima T, Ouchi M, Sawamoto M. Design of AB divinyl “template monomers” toward alternating sequence control in metal-catalyzed living radical polymerization. Polym Chem. 2011;2:341–7.

    Article  CAS  Google Scholar 

  25. Ouchi M, Nakano M, Nakanishi T, Sawamoto M. Alternating sequence control for carboxylic acid and hydroxy pendant groups by controlled radical cyclopolymerization of a divinyl monomer carrying a cleavable spacer. Angew Chem Int Ed. 2016;55:14584–9.

    Article  CAS  Google Scholar 

  26. Kametani Y, Sawamoto M, Ouchi M. Control of the alternating sequence for N-isopropylacrylamide (NIPAM) and methacrylic acid units in a copolymer by cyclopolymerization and transformation of the cyclopendant group. Angew Chem Int Ed. 2018;57:10905–9.

    Article  CAS  Google Scholar 

  27. Kametani Y, Tournilhac F, Sawamoto M, Ouchi M. Unprecedented sequence control and sequence-driven properties in a series of AB-alternating copolymers consisting solely of acrylamide units. Angew Chem Int Ed. 2020;59:5193–201.

    Article  CAS  Google Scholar 

  28. Oh D, Furuya Y, Ouchi M. Unusual radical copolymerization of suprabulky methacrylate with N-hydroxysuccinmide acrylate: facile syntheses of alternating-rich copolymers of methacrylic acid and N-alkyl acrylamide. Macromolecules. 2019;52:8577–86.

    Article  CAS  Google Scholar 

  29. Colquhoun H, Lutz JF. Information-containing macromolecules. Nat Chem. 2014;6:455–6.

    Article  CAS  Google Scholar 

  30. Lutz JF. Coding macromolecules: inputting information in polymers using monomer-based alphabets. Macromolecules. 2015;48:4759–67.

    Article  CAS  Google Scholar 

  31. Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz JF. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat Commun. 2015;6:7237.

    Article  CAS  Google Scholar 

  32. Gunay US, Petit BE, Karamessini D, Al OA, Amalian JA, Chendo C, et al. Chemoselective synthesis of uniform sequence-coded polyurethanes and their use as molecular tags. Chem. 2016;1:114–26.

    Article  CAS  Google Scholar 

  33. Konig NF, Al Ouahabi A, Oswald L, Szweda R, Charles L, Lutz JF. Photo-editable macromolecular information. Nat Commun. 2019;10:3774.

    Article  Google Scholar 

  34. Boukis AC, Reiter K, Frölich M, Hofheinz D, Meier MAR. Multicomponent reactions provide key molecules for secret communication. Nat Commun. 2018;9:1439.

    Article  Google Scholar 

  35. Martens S, Landuyt A, Espeel P, Devreese B, Dawyndt P, Du Prez F. Multifunctional sequence-defined macromolecules for chemical data storage. Nat Commun. 2018;9:4451.

    Article  Google Scholar 

  36. Huang Z, Shi Q, Guo J, Meng F, Zhang Y, Lu Y, et al. Binary tree-inspired digital dendrimer. Nat Commun. 2019;10:1918.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ouchi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchi, M. Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polym J 53, 239–248 (2021). https://doi.org/10.1038/s41428-020-00405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00405-7

This article is cited by

Search

Quick links