Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Precise sequence regulation through maleimide chemistry

Abstract

Sequence plays a crucial role in dictating the properties and applications of both natural and artificial polymers. Therefore, chemists have made great efforts to control the sequence of monomers along a polymer chain in the past decades. This focus review outlines the recent advances in sequence-controlled polymers (SCPs), mainly based upon the author’s research on constructing SCPs through maleimide chemistry, and discusses their potential applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:1238149.

    Article  PubMed  CAS  Google Scholar 

  2. Ouchi M, Sawamoto M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym. J 2018;50:83–94.

    Article  CAS  Google Scholar 

  3. Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science. 2012;337:1628.

    Article  CAS  PubMed  Google Scholar 

  4. Dill KA, MacCallum JL. The protein-folding problem 50 years. Science. 2012;338:1042–6.

    Article  CAS  PubMed  Google Scholar 

  5. Lutz JF. Defining the field of sequence-controlled polymers. Macromol Rapid Commun. 2017;38:1700582.

    Article  CAS  Google Scholar 

  6. Liu C, Mao H, Zheng J, Zhang S. Tight ultrafiltration membrane: preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal. J Polym Sci Part A: Polym Chem. 2010;45:2774–86.

    Google Scholar 

  7. Billiet S, Camp WV, Hillewaere XKD, Rahier H, Du Prez F. Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer. 2012;53:2320–6.

    Article  CAS  Google Scholar 

  8. Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010;39:1355–87.

    Article  CAS  PubMed  Google Scholar 

  9. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.

    Article  CAS  PubMed  Google Scholar 

  10. Yamada K, Nakano T, Okamoto Y. Free-radical copolymerization of vinyl esters using fluoroalcohols as solvents: The solvent effect on the monomer reactivity ratio. J Polym Sci Part A: Polym Chem. 2000;38:220–8.

    Article  CAS  Google Scholar 

  11. Satoh K, Matsuda M, Nagai K, Kamigaito M. AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J Am Chem Soc. 2010;132:10003–5.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuda M, Satoh K, Kamigaito M. 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. J Polym Sci Part A: Polym Chem. 2013;51:1774–85.

    Article  CAS  Google Scholar 

  13. Matsuda M, Satoh K, Kamigaito M. Periodically functionalized and grafted copolymers via 1:2-sequence-regulated radical copolymerization of naturally occurring functional limonene and maleimide derivatives. Macromolecules. 2013;46:5473–82.

    Article  CAS  Google Scholar 

  14. Zhou Y, Liu Q, Zhang Z, Jian Z, Zhu X. Toward alternating copolymerization of maleimide and vinyl acetate driven by hydrogen bonding. Polym Chem. 2017;8:6909–16.

    Article  CAS  Google Scholar 

  15. Li J, He JP. Synthesis of sequence-regulated polymers: alternating polyacetylene through regioselective anionic polymerization of butadiene derivatives. ACS Macro Lett. 2015;4:372–6.

    Article  CAS  Google Scholar 

  16. Ma H, Wang Q, Sang W, Han L, Liu P, Chen J, et al. Synthesis of bottlebrush polystyrenes with uniform, alternating, and gradient distributions of brushes via living anionic polymerization and hydrosilylation. Macromol Rapid Commun. 2015;36:726–32.

    Article  CAS  PubMed  Google Scholar 

  17. Satoh K, Saitoh S, Kamigaito M. A linear lignin analogue: phenolic alternating copolymers from naturally occurring beta-methylstyrene via aqueous-controlled cationic copolymerization. J Am Chem Soc. 2007;129:9586–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of Methyl-Methacrylate with the Carbon-Tetrachloride Dichlorotris(Triphenylphosphine)Ruthenium(Ii) Methylaluminum Bis(2,6-Di-Tert-Butylphenoxide) Initiating System - Possibility of Living Radical Polymerization. Macromolecules. 1995;28:1721–3.

    Article  CAS  Google Scholar 

  19. Wang JS, Matyjaszewski K. Controlled living radical polymerization - atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  20. Kramer JW, Treitler DS, Dunn EW, Castro PM, Roisnel T, Thomas CM, et al. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J Am Chem Soc. 2009;131:16042–4.

    Article  CAS  PubMed  Google Scholar 

  21. Moatsou D, Hansell CF, O'Reilly RK. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem Sci. 2014;5:2246–50.

    Article  CAS  Google Scholar 

  22. Gutekunst WR, Hawker CJ. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J Am Chem Soc. 2015;137:8038–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lutz JF, Kirci B, Matyjaszewski K. Synthesis of well-defined alternating copolymers by controlled/living radical polymerization in the presence of Lewis acids. Macromolecules. 2003;36:3136–45.

    Article  CAS  Google Scholar 

  24. Pfeifer S, Lutz JF. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J Am Chem Soc. 2007;129:9542–3.

    Article  CAS  PubMed  Google Scholar 

  25. Lutz JF, Schmidt BV, Pfeifer S. Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromol Rapid Commun. 2011;32:127–35.

    Article  CAS  PubMed  Google Scholar 

  26. Pfeifer S, Lutz JF. Development of a library of N-substituted maleimides for the local functionalization of linear polymer chains. Chem. 2008;14:10949–57.

    Article  CAS  Google Scholar 

  27. Ji Y, Zhang L, Gu X, Zhang W, Zhou N, Zhang Z, et al. Sequence-controlled polymers with furan-protected maleimide as a latent monomer. Angew Chem Int Ed. 2017;56:2328–33.

    Article  CAS  Google Scholar 

  28. Gu X, Zhang L, Li Y, Zhang W, Zhu J, Zhang Z, et al. Facile synthesis of advanced gradient polymers with sequence control using furan-protected maleimide as a comonomer. Polym Chem. 2018;9:1571–6.

    Article  CAS  Google Scholar 

  29. Zhang L, Ji Y, Gu X, Zhang W, Zhou N, Zhang Z, et al. Synthesis of sequence-controlled polymers with pendent "clickable" or hydrophilic groups via latent monomer strategy. React Funct Polym. 2019;138:96–103.

    Article  CAS  Google Scholar 

  30. Meng F, Zhang Y, Ding K, Liu B, Han F, He Y, et al. One-shot synthesis of sequence-controlled polymers with versatile succimide motifs for post-modifications. React Funct Polym. 2019;134:67–73.

    Article  CAS  Google Scholar 

  31. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024.

    Article  CAS  Google Scholar 

  32. Merrifield B. Solid phase synthesis. Nobel lecture, 8 December 1984. Biosci Rep. 1985;5:353–76.

    Article  CAS  PubMed  Google Scholar 

  33. Al Ouahabi A, Charles L, Lutz JF. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J Am Chem Soc. 2015;137:5629–35.

    Article  CAS  PubMed  Google Scholar 

  34. Kleiner RE, Brudno Y, Birnbaum ME, Liu DR. DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J Am Chem Soc. 2008;130:4646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnes JC, Ehrlich DJ, Gao AX, Leibfarth FA, Jiang Y, Zhou E, et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat Chem. 2015;7:810–5.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Y, Golder MR, Nguyen HV, Wang Y, Zhong M, Barnes JC, et al. Iterative exponential growth synthesis and assembly of uniform diblock copolymers. J Am Chem Soc. 2016;138:9369–72.

    Article  CAS  PubMed  Google Scholar 

  37. Solleder SC, Zengel D, Wetzel KS, Meier MA. A scalable and high-yield strategy for the synthesis of sequence-defined macromolecules. Angew Chem Int Ed. 2016;55:1204–7.

    Article  CAS  Google Scholar 

  38. Lawrence J, Lee SH, Abdilla A, Nothling MD, Ren JM, Knight AS, et al. A versatile and scalable strategy to discrete oligomers. J Am Chem Soc. 2016;138:6306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leibfarth FA, Johnson JA, Jamison TF. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG. Proc Natl Acad Sci USA2015;112:10617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schumm JS, Pearson DL, Tour JM. Iterative divergent/convergent approach to linear conjugated oligomers by successive doubling of the molecular length—a rapid route to a 128-angstrom-long potential molecular wire. Angew Chem Int Ed. 1994;33:1360–3.

    Article  Google Scholar 

  41. Pearson DL, Schumm JS, Tour JM. Iterative divergent convergent approach to conjugated oligomers by a doubling of molecular length at each iteration—a rapid route to potential molecular wires. Macromolecules. 1994;27:2348–50.

    Article  CAS  Google Scholar 

  42. Takizawa K, Nulwala H, Hu J, Yoshinaga K, Hawker CJ. Molecularly defined (L)-lactic acid oligomers and polymers: Synthesis and characterization. J Polym Sci Part A: Polym Chem. 2008;46:5977–90.

    Article  CAS  Google Scholar 

  43. Reddy SS, Dong X, Murgasova R, Gusev AI, Hercules DM. Synthesis and secondary-ion mass spectrometry of linear single oligomers of nylon-6. Macromolecules. 1999;32:1367–74.

    Article  CAS  Google Scholar 

  44. Hawker CJ, Malmstrom EE, Frank CW, Kampf JP. Exact linear analogs of dendritic polyether macromolecules: Design, synthesis, and unique properties. J Am Chem Soc. 1997;119:9903–4.

    Article  CAS  Google Scholar 

  45. Huang Z, Zhao J, Wang Z, Meng F, Ding K, Pan X, et al. Combining orthogonal chain-end deprotections and thiol-maleimide michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew Chem Int Ed. 2017;56:13612–7.

    Article  CAS  Google Scholar 

  46. Colquhoun H, Lutz JF. Information-containing macromolecules. Nat Chem. 2014;6:455–6.

    Article  CAS  PubMed  Google Scholar 

  47. Cavallo G, Al Ouahabi A, Oswald L, Charles L, Lutz JF. Orthogonal synthesis of "easy-to-read" information-containing polymers using phosphoramidite and radical coupling steps. J Am Chem Soc. 2016;138:9417–20.

    Article  CAS  PubMed  Google Scholar 

  48. Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz J-F. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat Commun. 2015;6:7237.

    Article  PubMed  CAS  Google Scholar 

  49. Huang Z, Shi Q, Guo J, Meng F, Zhang Y, Lu Y, et al. Binary tree-inspired digital dendrimer. Nat Commun. 2019;10:1918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Garnier R, Taylor J. Discrete mathematics: proofs, structures and applications. CRC press, Boca Raton, USA 2009.

    Book  Google Scholar 

  51. Grayson SM, Frechet JM. Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev. 2001;101:3819–68.

    Article  CAS  PubMed  Google Scholar 

  52. Wu CW, Yarbrough LR, Wu FY. N-(1-pyrene) maleimide: a fluorescent crosslinking reagent. Biochem. 1976;15:2863–8.

    Article  CAS  Google Scholar 

  53. Weissman M, Winger KT, Ghiassian S, Gobbo P, Workentin MS. Insights on the application of the retro-michael addition on maleimide-functionalized gold nanoparticles in biology and nanomedicine. Bioconjugate Chem. 2016;27:586–93.

    Article  CAS  Google Scholar 

  54. Langmuir ME, Yang J-R, Moussa AM, Laura R, LeCompte KA. New naphthopyranone based fluorescent thiol probes. Tetrahedron Lett. 1995;36:3989–92.

    Article  CAS  Google Scholar 

  55. Kanaoka Y. Organic fluorescence reagents in the study of enzymes and proteins. Angew Chem Int Ed. 1977;16:137–47.

    Article  CAS  Google Scholar 

  56. Wang Z, Huang Z, Zhou N, Dong X-H, Zhu X, Zhang Z. Quantitatively monitoring polymer chain growth and topology formation based on monodisperse polymers. Polym Chem. 2017;8:2346–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21674072), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Program of Innovative Research Team of Soochow University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Huang or Zhengbiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Zhang, Y., Huang, Z. et al. Precise sequence regulation through maleimide chemistry. Polym J 52, 21–31 (2020). https://doi.org/10.1038/s41428-019-0263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0263-7

Search

Quick links