Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Application value of serum S100B combined with glucose metabolism indexes in predicting adverse pregnancy outcomes of patients with severe preeclampsia

Abstract

S100 calcium-binding protein B (S100B) and glucose control are reflective of maternal-fetal risks. We investigated the value of serum S100B combined with fasting blood glucose (FBG)/hemoglobin A1c (HbA1c) in evaluating the pregnancy outcomes of patients with severe preeclampsia (SPE). The clinical characteristics of SPE patients/controls were collected. FBG/HbA1c and serum S100B levels were measured, with their correlations analyzed. SPE patients were subdivided into adverse/non-adverse outcome groups based on follow-up results. The value of different indexes in predicting pregnancy outcomes was analyzed. SPE patients showed higher systolic blood pressure, diastolic blood pressure, urine protein, and body mass index and lower platelets, gestational age at delivery, and infant birth weight than healthy controls. FBG and HbA1c were positively correlated with serum S100B. SPE patients with adverse outcomes exhibited increased serum S100B and FBG/HbA1c levels. The area under the curve of serum S100B + FBG/HbA1c in evaluating adverse pregnancy outcomes of SPE patients was 0.8412 (77.05% sensitivity/84.21% specificity), higher than either alone. Serum S100B and FBG/HbA1c were independent risk factors for adverse outcomes of SPE patients. Overall, serum S100B positively-correlates with FBG/HbA1c in SPE patients. Serum S100B and FBG/HbA1c are independent risk factors, and their combination has high value on predicting adverse pregnancy outcomes of SPE patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation between serum S100B levels and glucose metabolism indexes in SPE patients.
Fig. 2: Analysis of serum S100B levels and glucose metabolism indexes in SPE patients with adverse pregnancy outcomes.
Fig. 3: Value of serum S100B combined with glucose metabolism indexes on predicting adverse pregnancy outcomes of SPE patients.

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

References

  1. Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW, et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension. 2013;61:932–42.

    Article  CAS  PubMed  Google Scholar 

  2. Nirupama R, Divyashree S, Janhavi P, Muthukumar SP, Ravindra PV. Preeclampsia: pathophysiology and management. J Gynecol Obstet Hum Reprod. 2021;50:101975.

    Article  CAS  PubMed  Google Scholar 

  3. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76:1690–702.

    Article  CAS  PubMed  Google Scholar 

  4. Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398:341–54.

    Article  CAS  PubMed  Google Scholar 

  5. Post Uiterweer ED, Veerbeek JH, Franx A. [Pre-eclampsia]. Ned Tijdschr Tandheelkd. 2015;122:79–83.

    Article  CAS  PubMed  Google Scholar 

  6. Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol. 2018;72:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iriyama T, Wang W, Parchim NF, Song A, Blackwell SC, Sibai BM, et al. Hypoxia-independent upregulation of placental hypoxia inducible factor-1alpha gene expression contributes to the pathogenesis of preeclampsia. Hypertension. 2015;65:1307–15.

    Article  CAS  PubMed  Google Scholar 

  8. Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma. 2006;23:1185–200.

    Article  PubMed  Google Scholar 

  9. Sun BD, Liu HM, Nie SN. S100B protein in serum is elevated after global cerebral ischemic injury. World J Emerg Med. 2013;4:165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75:1786–93.

    Article  CAS  PubMed  Google Scholar 

  11. Bergman L, Akhter T, Wikstrom AK, Wikstrom J, Naessen T, Akerud H. Plasma levels of S100B in preeclampsia and association with possible central nervous system effects. Am J Hypertens. 2014;27:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wikstrom AK, Ekegren L, Karlsson M, Wikstrom J, Bergenheim M, Akerud H. Plasma levels of S100B during pregnancy in women developing pre-eclampsia. Pregnancy Hypertens. 2012;2:398–402.

    Article  PubMed  Google Scholar 

  13. Spradley FT. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2017;312:R5–12.

    Article  PubMed  Google Scholar 

  14. Xu F, Yang S, Liu Y, Zheng X, Yang H, Zhang J, et al. Placental pathology and neonatal outcomes in pre-eclampsia with gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2021;34:1149–54.

    Article  PubMed  Google Scholar 

  15. Yu H, Qi X, Wang X. Application of glycated hemoglobin in the perinatal period. Int J Clin Exp Med. 2014;7:4653–9.

    PubMed  PubMed Central  Google Scholar 

  16. Cohen AL, Wenger JB, James-Todd T, Lamparello BM, Halprin E, Serdy S, et al. The association of circulating angiogenic factors and HbA1c with the risk of preeclampsia in women with preexisting diabetes. Hypertens Pregnancy. 2014;33:81–92.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng Y, Shen Y, Jiang S, Ma X, Hu J, Li C, et al. Maternal glycemic parameters and adverse pregnancy outcomes among high-risk pregnant women. BMJ Open Diabetes Res Care. 2019;7:e000774.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kheirouri S, Ebrahimi E, Alizadeh M. Association of S100B serum levels with metabolic syndrome and its components. Acta Med Port. 2018;31:201–6.

    Article  CAS  PubMed  Google Scholar 

  19. Steiner J, Myint AM, Schiltz K, Westphal S, Bernstein HG, Walter M, et al. S100B serum levels in schizophrenia are presumably related to visceral obesity and insulin resistance. Cardiovasc Psychiatry Neurol. 2010;2010:480707.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Steiner J, Walter M, Guest P, Myint AM, Schiltz K, Panteli B, et al. Elevated S100B levels in schizophrenia are associated with insulin resistance. Mol Psychiatry. 2010;15:3–4.

    Article  CAS  PubMed  Google Scholar 

  21. Wartchow KM, Tramontina AC, de Souza DF, Biasibetti R, Bobermin LD, Goncalves CA. Insulin stimulates S100B secretion and these proteins antagonistically modulate brain glucose metabolism. Neurochem Res. 2016;41:1420–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gottardi E, Lecarpentier E, Villette C, Berman A, Redel D, Tsatsaris V, et al. Preeclampsia before 26 weeks of gestation: Obstetrical prognosis for the subsequent pregnancy. J Gynecol Obstet Hum Reprod. 2021;50:102000.

    Article  PubMed  Google Scholar 

  23. Takahashi N, Li F, Fushima T, Oyanagi G, Sato E, Oe Y, et al. Vitamin B(3) nicotinamide: a promising candidate for treating preeclampsia and improving fetal growth. Tohoku J Exp Med. 2018;244:243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pittara T, Vyrides A, Lamnisos D, Giannakou K. Pre-eclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG. 2021;128:1421–30.

    Article  CAS  PubMed  Google Scholar 

  25. Michetti F, Gazzolo D. S100B protein in biological fluids: a tool for perinatal medicine. Clin Chem. 2002;48:2097–104.

    Article  CAS  PubMed  Google Scholar 

  26. Nagdyman N, Komen W, Ko HK, Muller C, Obladen M. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr Res. 2001;49:502–6.

    Article  CAS  PubMed  Google Scholar 

  27. Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Golder S, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ. 2016;354:i4694.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ukah UV, De Silva DA, Payne B, Magee LA, Hutcheon JA, Brown H, et al. Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: a systematic review. Pregnancy Hypertens. 2018;11:115–23.

    Article  PubMed  Google Scholar 

  29. Wu J, Sheng X, Zhou S, Fang C, Song Y, Wang H, et al. Clinical significance of S100B protein in pregnant woman with early- onset severe preeclampsia. Ginekol Pol. 2021. https://doi.org/10.5603/GP.a2021.0126.

  30. Vettorazzi J, Torres FV, de Avila TT, Martins-Costa SH, Souza DO, Portela LV, et al. Serum S100B in pregnancy complicated by preeclampsia: a case-control study. Pregnancy Hypertens. 2012;2:101–5.

    Article  CAS  PubMed  Google Scholar 

  31. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab. 2018;29:743–54.

    Article  CAS  PubMed  Google Scholar 

  32. Cao W, Wang X, Chen T, Xu W, Feng F, Zhao S, et al. Maternal lipids, BMI and IL-17/IL-35 imbalance in concurrent gestational diabetes mellitus and preeclampsia. Exp Ther Med. 2018;16:427–35.

    PubMed  PubMed Central  Google Scholar 

  33. Vestgaard M, Sommer MC, Ringholm L, Damm P, Mathiesen ER. Prediction of preeclampsia in type 1 diabetes in early pregnancy by clinical predictors: a systematic review. J Matern Fetal Neonatal Med. 2018;31:1933–9.

    Article  PubMed  Google Scholar 

  34. Busse M, Scharm M, Oettel A, Redlich A, Costa SD, Zenclussen AC. Enhanced S100B expression in T and B lymphocytes in spontaneous preterm birth and preeclampsia. J Perinat Med. 2022;50:157–66.

    Article  CAS  PubMed  Google Scholar 

  35. Misan N, Michalak S, Kapska K, Osztynowicz K, Ropacka-Lesiak M, Kawka-Paciorkowska K. Does the blood-brain barrier integrity change in regard to the onset of fetal growth restriction? Int J Mol Sci. 2023;24:1965.

  36. Roka A, Kelen D, Halasz J, Beko G, Azzopardi D, Szabo M. Serum S100B and neuron-specific enolase levels in normothermic and hypothermic infants after perinatal asphyxia. Acta Paediatr. 2012;101:319–23.

    Article  CAS  PubMed  Google Scholar 

  37. Park JS, Kim DW, Kwon JY, Park YW, Kim YH, Cho HY. Development of a screening tool for predicting adverse outcomes of gestational diabetes mellitus: a retrospective cohort study. Medicine. 2016;95:e2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gou BH, Guan HM, Bi YX, Ding BJ. Gestational diabetes: weight gain during pregnancy and its relationship to pregnancy outcomes. Chin Med J. 2019;132:154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Florio P, Marinoni E, Di Iorio R, Bashir M, Ciotti S, Sacchi R, et al. Urinary S100B protein concentrations are increased in intrauterine growth-retarded newborns. Pediatrics. 2006;118:e747–54.

    Article  PubMed  Google Scholar 

  40. Hong JGS, Fadzleeyanna MYN, Omar SZ, Tan PC. HbA1c at term delivery and adverse pregnancy outcome. BMC Pregnancy Childbirth. 2022;22:679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zawiejska A, Wroblewska-Seniuk K, Gutaj P, Mantaj U, Gomulska A, Kippen J, et al. Early screening for gestational diabetes using IADPSG criteria may be a useful predictor for congenital anomalies: preliminary data from a high-risk population. J Clin Med. 2020;9:3553.

  42. Xiao J, Fan W, Zhu Q, Shi Z. Diagnosis of proteinuria using a random urine protein-creatinine ratio and its correlation with adverse outcomes in pregnancy with preeclampsia characterized by renal damage. J Clin Hypertens. 2022;24:652–9.

    Article  CAS  Google Scholar 

  43. Strzalko B, Karowicz-Bilinska A, Wyka K, Krajewski P, Kesiak M, Kociszewska-Najman B. Serum S100B Protein Concentrations in SGA/FGR newborns. Ginekol Pol. 2021.

  44. Xiao Y, Zhang X. Association between maternal glucose/lipid metabolism parameters and abnormal newborn birth weight in gestational diabetes complicated by preeclampsia: a retrospective analysis of 248 cases. Diabetes Ther. 2020;11:905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sekitoleko I, Tino S, Mubiru M, Nansubuga F, Zaake D, Nakabuye B, et al. The influence of fasting and post-load glucose levels on maternal and neonatal outcomes in women with hyperglycaemia in pregnancy in Uganda: a prospective observational cohort study. Diabetes Res Clin Pract. 2022;191:110049.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All contributions were from AY.

Corresponding author

Correspondence to Aiqin Yan.

Ethics declarations

Competing interests

All author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, A. Application value of serum S100B combined with glucose metabolism indexes in predicting adverse pregnancy outcomes of patients with severe preeclampsia. J Hum Hypertens 38, 232–237 (2024). https://doi.org/10.1038/s41371-023-00887-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-023-00887-x

Search

Quick links