Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From HDLS to BANDDOS: fast-expanding phenotypic spectrum of disorders caused by mutations in CSF1R

Abstract

Colony-stimulating factor 1 receptor (CSF1R) plays key roles in the development and function of the cells in the monocyte/macrophage lineage, including microglia and osteoclasts. It is well known that mono-allelic mutations of CSF1R cause hereditary diffuse leukoencephalopathy with spheroids (HDLS, OMIM # 221820), an adult-onset progressive neurodegenerative disorder. Recently, a more severe phenotypic spectrum has been identified in individuals with bi-allelic mutations of CSF1R. In addition to leukoencephalopathy of earlier onset than HDLS, the new disease shows brain malformations and skeletal dysplasia compatible with dysosteosclerosis (DOS), thus named “brain abnormalities, neurodegeneration, and dysosteosclerosis” (BANDDOS, OMIM # 618476). In addition, some individuals with bi-allelic missense mutations of CSF1R have been found to present with incomplete BANDDOS where skeletal dysplasia is absent. In this review, we summarize the monogenic disorders caused by mutations in CSF1R and their mutational spectra, and propose a dose-dependent model to explain the complex genotype–phenotype association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, et al. Biology and action of colony-stimulating factor-1. Mol Reprod Dev. 1997;46:4–10.

    Article  CAS  Google Scholar 

  2. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011;44:200–5.

    Article  Google Scholar 

  3. Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y, Yokota T, et al. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am J Hum Genet. 2019;104:925–35.

    Article  CAS  Google Scholar 

  4. Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–38.

    Article  CAS  Google Scholar 

  5. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6:a021857.

    Article  Google Scholar 

  6. Mun SH, Park PSU, Park-Min KH. The M-CSF receptor in osteoclasts and beyond. Exp Mol Med. 2020;52:1239–54.

    Article  CAS  Google Scholar 

  7. Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol. 2020;107:205–19.

    Article  CAS  Google Scholar 

  8. Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J Immunol. 2020;205:3154–66.

    Article  CAS  Google Scholar 

  9. Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:3215.

    Article  Google Scholar 

  10. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99:111–20.

    Article  CAS  Google Scholar 

  11. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6:e26317.

    Article  CAS  Google Scholar 

  12. Chitu V, Gokhan S, Gulinello M, Branch CA, Patil M, Basu R, et al. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol Dis. 2015;74:219–28.

    Article  CAS  Google Scholar 

  13. Patkar OL, Caruso M, Teakle N, Keshvari S, Bush SJ, Pridans C, et al. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis. 2021;151:105268.

    Article  CAS  Google Scholar 

  14. Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J Immunol. 2018;201:2683–99.

    Article  CAS  Google Scholar 

  15. Wider C, Van Gerpen JA, DeArmond S, Shuster EA, Dickson DW, Wszolek ZK. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity?. Neurology. 2009;72:1953–9.

    Article  CAS  Google Scholar 

  16. Zhuang LP, Liu CY, Li YX, Huang HP, Zou ZY. Clinical features and genetic characteristics of hereditary diffuse leukoencephalopathy with spheroids due to CSF1R mutation: a case report and literature review. Ann Transl Med. 2020;8:11.

    Article  Google Scholar 

  17. Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM, Daza R, et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet. 2019;104:936–47.

    Article  CAS  Google Scholar 

  18. Tamhankar PM, Zhu B, Tamhankar VP, Mithbawkar S, Seabra L, Livingston JH. et al. A novel hypomorphic CSF1R gene mutation in the biallelic state leading to fatal childhood neurodegeneration. Neuropediatrics. 2020;51:302–6.

    Article  Google Scholar 

  19. Kındış E, Simsek-Kiper PÖ, Koşukcu C, Taşkıran EZ, Göçmen R, Utine E, et al. Further expanding the mutational spectrum of brain abnormalities, neurodegeneration, and dysosteosclerosis: a rare disorder with neurologic regression and skeletal features. Am J Med Genet A. 2021;185:1888–96.

    Article  Google Scholar 

  20. Spranger J, Albrecht C, Rohwedder HJ, Wiedemann HR. Dysosteosclerosis-a special form of generalized osteosclerosis. Fortschr Geb Rontgenstr Nuklearmed. 1968;109:504–12.

    Article  CAS  Google Scholar 

  21. Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21:4904–9.

    Article  CAS  Google Scholar 

  22. Guo L, Elcioglu NH, Karalar OK, Topkar MO, Wang Z, Sakamoto Y, et al. Dysosteosclerosis is also caused by TNFRSF11A mutation. J Hum Genet 2018;63:769–74.

    Article  CAS  Google Scholar 

  23. Xue JY, Wang Z, Shinagawa S, Ohashi H, Otomo N, Elcioglu NH, et al. TNFRSF11A-associated dysosteosclerosis: a report of the second case and characterization of the phenotypic spectrum. J Bone Min Res. 2019;34:1873–9.

    Article  CAS  Google Scholar 

  24. Xue JY, Wang Z, Smithson SF, Burren CP, Matsumoto N, Nishimura G, et al. The third case of TNFRSF11A-associated dysosteosclerosis with a mutation producing elongating proteins. J Hum Genet. 2020;9:1–7.

    Google Scholar 

  25. Xue JY, Ikegawa S, Guo L. Genetic disorders associated with the RANKL/OPG/RANK pathway. J Bone Min Metab. 2020;17:1–9.

    Google Scholar 

  26. Xue JY, Simsek-Kiper PO, Utine GE, Yan L, Wang Z, Taskiran EZ, et al. Expanding the phenotypic spectrum of TNFRSF11A-associated dysosteosclerosis: a case with intracranial extramedullary hematopoiesis. J Hum Genet. 2021;66:607–11.

    Article  CAS  Google Scholar 

  27. Kiper POS, Saito H, Gori F, Unger S, Hesse E, Yamana K, et al. Cortical-bone fragility-insights from sFRP4 deficiency in Pyle’s disease. N Engl J Med. 2016;374:2553–62.

    Article  CAS  Google Scholar 

  28. Konno T, Tada M, Tada M, Koyama A, Nozaki H, Harigaya Y. et al. Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS. Neurology. 2014;82:139–48.

    Article  CAS  Google Scholar 

  29. Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017;19:1144–50.

    Article  CAS  Google Scholar 

  30. Karle KN, Biskup S, Schüle R, Schweitzer KJ, Krüger R, Bauer P. et al. De novo mutations in hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS). Neurology. 2013;81:2039–44.

    Article  CAS  Google Scholar 

  31. Hamilton JA. CSF-1 signal transduction. J Leukoc Biol. 1997;62:145–55.

    Article  CAS  Google Scholar 

  32. Pridans C, Sauter KA, Baer K, Kissel H, Hume DA. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Sci Rep. 2013;3:1–5.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Tomoko Kusadokoro for her help in a series of our studies.

Funding

This study is supported by grants from the Japan Society for the Promotion of Science (SI, No. 18H02932) and the Japan Agency For Medical Research and Development (SI, No. 20bm0804006h0104 and 20ek0109486h0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Ikegawa, S. From HDLS to BANDDOS: fast-expanding phenotypic spectrum of disorders caused by mutations in CSF1R. J Hum Genet 66, 1139–1144 (2021). https://doi.org/10.1038/s10038-021-00942-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00942-w

This article is cited by

Search

Quick links