Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Foxp3 is a key downstream regulator of p53-mediated cellular senescence

Subjects

Abstract

The downstream events and target genes of p53 in the process of senescence are not fully understood. Here, we report a novel function of the forkhead transcription factor Foxp3, which is a key player in mediating T-cell inhibitory functions, in p53-mediated cellular senescence. The overexpression of Foxp3 in mouse embryonic fibroblasts (MEFs) accelerates senescence, whereas Foxp3 knockdown leads to escape from p53-mediated senescence in p53-expressing MEFs. Consistent with these results, Foxp3 expression resulted in the induction of senescence in epithelial cancer cells, including MCF7 and HCT116 cells. Foxp3 overexpression also increased the intracellular levels of reactive oxygen species (ROS). The ROS inhibitor N-acetyl-l-cysteine rescued cells from Foxp3-expression-induced senescence. Furthermore, the elevated ROS levels that accompanied Foxp3 overexpression were paralleled by an increase in p21 expression. Knockdown of p21 in Foxp3-expressing MEFs abrogated the Foxp3-dependent increase in ROS levels, indicating that Foxp3 acts through the induction of p21 and the subsequent ROS elevation to trigger senescence. Collectively, these results suggest that Foxp3 is a downstream target of p53 that is sufficient to induce p21 expression, ROS production and p53-mediated senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Oren M . Decision making by p53: life, death and cancer. Cell Death Differ 2003; 10: 431–442.

    Article  CAS  PubMed  Google Scholar 

  2. Bond JA, Blaydes JP, Rowson J, Haughton MF, Smith JR, Wynford-Thomas D et al. Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Cancer Res 1995; 55: 2404–2409.

    CAS  PubMed  Google Scholar 

  3. Bond JA, Wyllie FS, Wynford-Thomas D . Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 1994; 9: 1885–1889.

    CAS  PubMed  Google Scholar 

  4. Feng L, Hollstein M, Xu Y . Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 2006; 5: 2812–2819.

    Article  CAS  PubMed  Google Scholar 

  5. Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS et al. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 2001; 20: 5818–5825.

    Article  CAS  PubMed  Google Scholar 

  6. Sugrue MM, Shin DY, Lee SW, Aaronson SA . Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 1997; 94: 9648–9653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 2002; 22: 3497–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  9. Sreeramaneni R, Chaudhry A, McMahon M, Sherr CJ, Inoue K . Ras-Raf-Arf signaling critically depends on the Dmp1 transcription factor. Mol Cell Biol 2005; 25: 220–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thaler S, Hahnel PS, Schad A, Dammann R, Schuler M . RASSF1A mediates p21Cip1/Waf1-dependent cell cycle arrest and senescence through modulation of the Raf-MEK-ERK pathway and inhibition of Akt. Cancer Res 2009; 69: 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  11. Packer L, Fuehr K . Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977; 267: 423–425.

    Article  CAS  PubMed  Google Scholar 

  12. von Zglinicki T, Saretzki G, Docke W, Lotze C . Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 1995; 220: 186–193.

    Article  CAS  PubMed  Google Scholar 

  13. Jung MS, Jin DH, Chae HD, Kang S, Kim SC, Bang YJ et al. Bcl-xL and E1B-19 K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing reactive oxygen species-dependent p38 activation. J Biol Chem 2004; 279: 17765–17771.

    Article  CAS  PubMed  Google Scholar 

  14. Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002; 21: 2180–2188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue T, Kato K, Kato H, Asanoma K, Kuboyama A, Ueoka Y et al. Level of reactive oxygen species induced by p21Waf1/CIP1 is critical for the determination of cell fate. Cancer Sci 2009; 100: 1275–1283.

    Article  CAS  PubMed  Google Scholar 

  16. Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest 2006; 116: 1713–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le Bras S, Geha RS . IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest 2006; 116: 1473–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 2007; 117: 3765–3773.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 2007; 129: 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu R, Wang L, Chen G, Katoh H, Chen C, Liu Y et al. FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res 2009; 69: 2252–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung DJ, Jin DH, Hong SW, Kim JE, Shin JS, Kim D et al. Foxp3 expression in p53-dependent DNA damage responses. J Biol Chem 2010; 285: 7995–8002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T . DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 2009; 8: 311–323.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Q, Yasumoto H, Tsai RY . Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability. Mol Cell Biol 2006; 26: 9279–9290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    Article  CAS  PubMed  Google Scholar 

  25. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY et al. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 1997; 94: 3064–3069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harman D . Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300.

    Article  CAS  PubMed  Google Scholar 

  27. Sohal RS, Weindruch R . Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim HS, Lim IK . Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284: 15475–15486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yakes FM, Van Houten B . Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997; 94: 514–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grimmig T, Kim M, Germer CT, Gasser M, Waaga-Gasser AM . The role of FOXP3 in disease progression in colorectal cancer patients. Oncoimmunology 2013; 2: e24521.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Winerdal ME, Marits P, Winerdal M, Hasan M, Rosenblatt R, Tolf A et al. FOXP3 and survival in urinary bladder cancer. BJU Int 2011; 108: 1672–1678.

    Article  CAS  PubMed  Google Scholar 

  32. Ma GF, Miao Q, Liu YM, Gao H, Lian JJ, Wang YN et al. High FoxP3 expression in tumour cells predicts better survival in gastric cancer and its role in tumour microenvironment. Br J Cancer 2014; 110: 1552–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ladoire S, Arnould L, Mignot G, Coudert B, Rebe C, Chalmin F et al. Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 2011; 125: 65–72.

    Article  CAS  PubMed  Google Scholar 

  34. Orr WC, Sohal RS . Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994; 263: 1128–1130.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92: 4337–4341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA et al. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 2007; 130: 624–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2013233), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2013R1A2A2A01067394), Seoul, Republic of Korea. The National Research Foundation of Korea Grant funded by the Korea Government (Ministry of Education, Science and Technology) (NRF-2010-355-C00062).

Accession numbers: The full microarray data set has been deposited in the Gene Expression Omnibus (GEO) database under submission number GSE71980.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K-p Kim or D-H Jin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JE., Shin, JS., Moon, JH. et al. Foxp3 is a key downstream regulator of p53-mediated cellular senescence. Oncogene 36, 219–230 (2017). https://doi.org/10.1038/onc.2016.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.193

This article is cited by

Search

Quick links