Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The TRIM-FLMN protein TRIM45 directly interacts with RACK1 and negatively regulates PKC-mediated signaling pathway

Abstract

The receptor for activated C-kinase (RACK1), a scaffolding protein that participates in the protein kinase C (PKC) signaling pathway, has an important role in shuttling active PKCs to its substrate. Indeed, recent studies have revealed that RACK1 has an important role in tumorigenesis and that enhancement of the feed-forward mechanism of the c-Jun N-terminal kinase (JNK)–Jun pathway via RACK1 is associated with constitutive activation of MEK (MAPK-ERK kinase)–ERK (extracellular signal-regulated kinase) signaling in human melanoma cells. Taken together, RACK1 additionally has a very important role in the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we show that one of the tripartite motif-containing (TRIM) family ubiquitin ligases, TRIM45, is a novel RACK1-interacting protein and downregulates MAPK signal transduction. Importantly, the expression of TRIM45 is induced when growth-promoting extracellular stimuli activate the MAPK signaling pathway, resulting in attenuation of activation of the MAPK pathway. These findings suggest that TRIM45 functions as a member of the negative feedback loop of the MAPK pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Avruch J . MAP kinase pathways: the first twenty years. Biochim Biophys Acta 2007; 1773: 1150–1160.

    Article  CAS  PubMed  Google Scholar 

  2. Raman M, Chen W, Cobb MH . Differential regulation and properties of MAPKs. Oncogene 2007; 26: 3100–3112.

    Article  CAS  PubMed  Google Scholar 

  3. Calvo F, Agudo-Ibanez L, Crespo P . The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 2010; 32: 412–421.

    Article  CAS  PubMed  Google Scholar 

  4. Kondoh K, Nishida E . Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 2007; 1773: 1227–1237.

    Article  CAS  Google Scholar 

  5. Imajo M, Tsuchiya Y, Nishida E . Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life 2006; 58: 312–317.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B et al. MAP kinases. Chem Rev 2001; 101: 2449–2476.

    Article  CAS  Google Scholar 

  7. Kyriakis JM, Avruch J . Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  8. Roux PP, Blenis J . ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68: 320–344.

    Article  CAS  PubMed  Google Scholar 

  9. Cargnello M, Roux PP . Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75: 50–83.

    Article  CAS  PubMed  Google Scholar 

  10. Maurer G, Tarkowski B, Baccarini M . Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 2011; 30: 3477–3488.

    Article  CAS  Google Scholar 

  11. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M . Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008; 10: 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M et al. Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell 2007; 11: 447–460.

    Article  CAS  PubMed  Google Scholar 

  13. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D . Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 1994; 91: 839–843.

    Article  CAS  PubMed  Google Scholar 

  14. Ron D, Luo J, Mochly-Rosen D . C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J Biol Chem 1995; 270: 24180–24187.

    Article  CAS  PubMed  Google Scholar 

  15. Ron D, Mochly-Rosen D . An autoregulatory region in protein kinase C: the pseudoanchoring site. Proc Natl Acad Sci USA 1995; 92: 492–496.

    Article  CAS  PubMed  Google Scholar 

  16. Dorn GW 2nd, Mochly-Rosen D . Intracellular transport mechanisms of signal transducers. Annu Rev Physiol 2002; 64: 407–429.

    Article  CAS  PubMed  Google Scholar 

  17. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ . The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 2002; 62: 1261–1273.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Reefy S, Osman H, Jiang W, Mokbel K . Evidence for a pro-apoptotic function of RACK1 in human breast cancer. Oncogene 2010; 29: 5651, author reply 2.

    Article  CAS  PubMed  Google Scholar 

  19. Bourd-Boittin K, Le Pabic H, Bonnier D, L'Helgoualc'h A, Theret N . RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J Biol Chem 2008; 283: 26000–26009.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J et al. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008; 283: 16416–16426.

    Article  CAS  PubMed  Google Scholar 

  21. Shi S, Deng YZ, Zhao JS, Ji XD, Shi J, Feng YX et al. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 2012; 287: 7845–7858.

    Article  CAS  PubMed  Google Scholar 

  22. Bauman AL, Scott JD . Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat Cell Biol 2002; 4: E203–E206.

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z . RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 2005; 19: 309–320.

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Bergami P, Ronai Z . Requirements for PKC-augmented JNK activation by MKK4/7. Int J Biochem Cell Biol 2008; 40: 1055–1064.

    Article  CAS  PubMed  Google Scholar 

  25. Nisole S, Stoye JP, Saib A . TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3: 799–808.

    Article  CAS  PubMed  Google Scholar 

  26. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20: 2140–2151.

    Article  CAS  PubMed  Google Scholar 

  27. Meroni G, Diez-Roux G . TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2005; 27: 1147–1157.

    Article  CAS  Google Scholar 

  28. Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S et al. TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 2011; 32: 995–1004.

    Article  CAS  PubMed  Google Scholar 

  29. Sato T, Okumura F, Kano S, Kondo T, Ariga T, Hatakeyama S . TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription. J Cell Sci 2011; 124: 3492–3502.

    Article  CAS  PubMed  Google Scholar 

  30. Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N et al. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res 2008; 68: 3486–3494.

    Article  CAS  PubMed  Google Scholar 

  31. Kano S, Miyajima N, Fukuda S, Hatakeyama S . Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res 2008; 68: 5572–5580.

    Article  CAS  PubMed  Google Scholar 

  32. Quaderi NA, Schweiger S, Gaudenz K, Franco B, Rugarli EI, Berger W et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 1997; 17: 285–291.

    Article  CAS  PubMed  Google Scholar 

  33. Hatakeyama S . TRIM proteins and cancer. Nat Rev Cancer 2011; 11: 792–804.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Li Y, Qi X, Yuan W, Ai J, Zhu C et al. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1. Biochem Biophys Res Commun 2004; 323: 9–16.

    Article  CAS  PubMed  Google Scholar 

  35. Adams DR, Ron D, Kiely PA . RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 2011; 9: 22.

    Article  CAS  PubMed  Google Scholar 

  36. Shibata M, Sato T, Nukiwa R, Ariga T, Hatakeyama S . TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun 2012; 423: 104–109.

    Article  CAS  PubMed  Google Scholar 

  37. Chou YC, Chou CC, Chen YK, Tsai S, Hsieh FM, Liu HJ et al. Structure and genomic organization of porcine RACK1 gene. Biochim Biophys Acta 1999; 1489: 315–322.

    Article  CAS  PubMed  Google Scholar 

  38. He DY, Neasta J, Ron D . Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 2010; 285: 19043–19050.

    Article  CAS  PubMed  Google Scholar 

  39. Soh JW, Weinstein IB . Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes. J Biol Chem 2003; 278: 34709–34716.

    Article  CAS  PubMed  Google Scholar 

  40. Rotenberg SA, Sun XG . Photoinduced inactivation of protein kinase C by dequalinium identifies the RACK-1-binding domain as a recognition site. J Biol Chem 1998; 273: 2390–2395.

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Bergami P, Lau E, Ronai Z . Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 2010; 10: 65–76.

    Article  CAS  PubMed  Google Scholar 

  42. Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS . MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 2002; 22: 2871–2881.

    Article  CAS  PubMed  Google Scholar 

  43. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. . The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8: 25–33.

    Article  CAS  PubMed  Google Scholar 

  44. Prusty BK, Das BC . Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 2005; 113: 951–960.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CA, Kong SE et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011; 146: 92–104.

    Article  CAS  PubMed  Google Scholar 

  46. Sato T, Okumura F, Ariga T, Hatakeyama S . TRIM6 interacts with Myc and maintains the pluripotency of mouse embryonic stem cells. J Cell Sci 2012; 125: 1544–1555.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI . Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 2005; 280: 5611–5621.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Toshio Kitamura (Tokyo University) for the plasmid and cell lines. This work was supported in part by a research grant from Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan, Japan Foundation for Applied Enzymology, and Children’s Cancer Association of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Sato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Takahashi, H., Hatakeyama, S. et al. The TRIM-FLMN protein TRIM45 directly interacts with RACK1 and negatively regulates PKC-mediated signaling pathway. Oncogene 34, 1280–1291 (2015). https://doi.org/10.1038/onc.2014.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.68

This article is cited by

Search

Quick links