Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation

Abstract

Hepatocarcinogenesis results from the accumulation of genetic and epigenetic changes in liver cells. A common mechanism through which these alterations induce liver cancer is by deregulating signaling pathways. A number of signaling pathways, including the PI3K/PTEN/AKT and transforming growth factor β (TGF-β) pathways have been implicated in normal liver development as well as in cancer formation. In this study, we assessed the effect of the TGF-β signaling pathway on liver tumors induced by phosphatase and tensin homolog (Pten) loss. Inactivation of only the TGF-β receptor type II, Tgfbr2, in the mouse liver (Tgfbr2LKO) had no overt phenotype, while inactivation of Pten alone (PtenLKO), resulted in the formation of both hepatocellular carcinomas and cholangiocarcinomas (CC). Interestingly, deletion of both Pten and Tgfbr2 (PtenLKO;Tgfbr2LKO) in the mouse liver resulted in a dramatic shift in tumor type to predominantly CC. Assessment of the PI3K/PTEN/AKT pathway revealed increased phosphorylation of AKT and glycogen synthase kinase 3 beta (GSK-3β) in both the PtenLKO and PtenLKO;Tgfbr2LKO mice, suggesting that this pathway is constitutively active regardless of the status of the TGF-β signaling pathway. However, phosphorylation of p70 S6 kinase was observed in the liver of all three phenotypes (Tgfbr2LKO, PtenLKO, PtenLKO;Tgfbr2LKO) indicating that the loss of Tgfbr2 and/or Pten leads to an increase in this signaling pathway. Analysis of markers of liver progenitor/stem cells revealed that the loss of TGF-β signaling resulted in increased expression of c-Kit and CD133. Furthermore, in addition to increased c-Kit and CD133, Scf and EpCam expression were also increased in the double knock-out mice. These results suggest that the alteration in tumor types between the PtenLKO mice and PtenLKO;Tgfbr2LKO mice is secondary to the altered regulation of stem-cell features induced by the loss of TGF-β signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Google Scholar 

  2. Singal AK, Vauthey JN, Grady JJ, Stroehlein JR . Intra-hepatic cholangiocarcinoma—frequency and demographic patterns: thirty-year data from the M.D. Anderson Cancer Center. J Cancer Res Clin Oncol 2011; 137: 1071–1078.

    Article  Google Scholar 

  3. Yeh MM . Pathology of combined hepatocellular-cholangiocarcinoma. J Gastroenterol Hepatol 2010; 25: 1485–1492.

    Article  Google Scholar 

  4. Wu X Li Y . Signaling pathways in liver cancer. Julianov, A (ed). Liver Tumors, 2012, pp 37–58. http://www.intechopen.com/books/liver-tumors/signaling-pathways-in-liver-cancer.

    Google Scholar 

  5. Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K et al. Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2012; 9: 530–538.

    Article  CAS  Google Scholar 

  6. Fabregat I . Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 2009; 15: 513–520.

    Article  CAS  Google Scholar 

  7. Breuhahn K, Longerich T, Schirmacher P . Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 2006; 25: 3787–3800.

    Article  CAS  Google Scholar 

  8. Whittaker S, Marais R, Zhu AX . The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010; 29: 4989–5005.

    Article  CAS  Google Scholar 

  9. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127–150.

    Article  CAS  Google Scholar 

  10. Carracedo A, Pandolfi PP . The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008; 27: 5527–5541.

    Article  CAS  Google Scholar 

  11. Shi Y, Paluch BE, Wang X, Jiang X . PTEN at a glance. J Cell Sci 2012; 125: 4687–4692.

    Article  CAS  Google Scholar 

  12. Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H et al. PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene 1999; 18: 3181–3185.

    Article  CAS  Google Scholar 

  13. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 2003; 97: 1929–1940.

    Article  CAS  Google Scholar 

  14. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J et al. The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet 2008; 57: 10.11.1–10.11.26.

    Google Scholar 

  15. Knobbe CB, Lapin V, Suzuki A, Mak TW . The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27: 5398–5415.

    Article  CAS  Google Scholar 

  16. Rountree CB, Ding W, He L, Stiles B . Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice. Stem Cells 2009; 27: 290–299.

    Article  CAS  Google Scholar 

  17. Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 2004; 101: 2082–2087.

    Article  CAS  Google Scholar 

  18. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113: 1774–1783.

    Article  CAS  Google Scholar 

  19. Galicia VA, He L, Dang H, Kanel G, Vendryes C, French BA et al. Expansion of hepatic tumor progenitor cells in Pten-null mice requires liver injury and is reversed by loss of AKT2. Gastroenterology 2010; 139: 2170–2182.

    Article  CAS  Google Scholar 

  20. Amin R, Mishra L . Liver stem cells and tgf-Beta in hepatic carcinogenesis. Gastrointest Cancer Res 2008; 2: S27–S30.

    PubMed  PubMed Central  Google Scholar 

  21. Herrera B, Sanchez A, Fabregat I . BMPS and liver: more questions than answers. Curr Pharm Des 2012; 18: 4114–4125.

    Article  CAS  Google Scholar 

  22. Zaret KS . Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 2001; 11: 568–574.

    Article  CAS  Google Scholar 

  23. Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by onecut transcription factors. Genes Dev 2005; 19: 1849–1854.

    Article  CAS  Google Scholar 

  24. Wu K, Ding J, Chen C, Sun W, Ning BF, Wen W et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 2012; 56: 2255–2267.

    Article  CAS  Google Scholar 

  25. Shiraki N, Umeda K, Sakashita N, Takeya M, Kume K, Kume S . Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells 2008; 13: 731–746.

    Article  CAS  Google Scholar 

  26. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 2007; 45: 1229–1239.

    Article  CAS  Google Scholar 

  27. Kitisin K, Ganesan N, Tang Y, Jogunoori W, Volpe EA, Kim SS et al. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene 2007; 26: 7103–7110.

    Article  CAS  Google Scholar 

  28. Bierie B, Moses HL . TGF-beta and cancer. Cytokine Growth Factor Rev 2006; 17: 29–40.

    Article  CAS  Google Scholar 

  29. Attisano L, Wrana JL . Signal integration in TGF-beta, WNT, and Hippo pathways. F1000Prime Rep 2013; 5: 17.

    Article  Google Scholar 

  30. Peyrou M, Bourgoin L, Foti M . PTEN in liver diseases and cancer. World J Gastroenterol 2010; 16: 4627–4633.

    Article  CAS  Google Scholar 

  31. Hollander MC, Blumenthal GM, Dennis PA . PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11: 289–301.

    Article  CAS  Google Scholar 

  32. Postic C, Magnuson MA . DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 2000; 26: 149–150.

    Article  CAS  Google Scholar 

  33. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32: 148–149.

    Article  CAS  Google Scholar 

  34. Xu X, Kobayashi S, Qiao W, Li C, Xiao C, Radaeva S et al. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 2006; 116: 1843–1852.

    Article  CAS  Google Scholar 

  35. Wakefield LM, Hill CS . Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 2013; 13: 328–341.

    Article  CAS  Google Scholar 

  36. Wennerberg AE, Nalesnik MA, Coleman WB . Hepatocyte paraffin 1: a monoclonal antibody that reacts with hepatocytes and can be used for differential diagnosis of hepatic tumors. Am J Pathol 1993; 143: 1050–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim H, Park C, Han KH, Choi J, Kim YB, Kim JK et al. Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol 2004; 40: 298–304.

    Article  CAS  Google Scholar 

  38. Sugimachi K, Aishima S, Taguchi K, Tanaka S, Shimada M, Kajiyama K et al. The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma. J Hepatol 2001; 35: 74–79.

    Article  CAS  Google Scholar 

  39. Zhou L, Liu J, Luo F . Serum tumor markers for detection of hepatocellular carcinoma. World J Gastroenterol 2006; 12: 1175–1181.

    Article  CAS  Google Scholar 

  40. Luo SM, Tan WM, Deng WX, Zhuang SM, Luo JW . Expression of albumin, IGF-1, IGFBP-3 in tumor tissues and adjacent non-tumor tissues of hepatocellular carcinoma patients with cirrhosis. World J Gastroenterol 2005; 11: 4272–4276.

    Article  CAS  Google Scholar 

  41. Yamashita T, Wang XW . Cancer stem cells in the development of liver cancer. J Clin Invest 2013; 123: 1911–1918.

    Article  CAS  Google Scholar 

  42. Mansuroglu T, Baumhoer D, Dudas J, Haller F, Cameron S, Lorf T et al. Expression of stem cell factor receptor c-kit in human nontumoral and tumoral hepatic cells. Eur J Gastroenterol Hepatol 2009; 21: 1206–1211.

    Article  CAS  Google Scholar 

  43. Mansuroglu T, Ramadori P, Dudas J, Malik I, Hammerich K, Fuzesi L et al. Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma. Lab Invest 2009; 89: 562–574.

    Article  CAS  Google Scholar 

  44. Petritsch C, Beug H, Balmain A, Oft M . TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 2000; 14: 3093–3101.

    Article  CAS  Google Scholar 

  45. Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L et al. Reciprocal regulation by TLR4 and TGF-beta in tumor-initiating stem-like cells. J Clin Invest 2013; 123: 2832–2849.

    Article  CAS  Google Scholar 

  46. Mittal S, El-Serag HB . Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 2013; 47: S2–S6.

    Article  Google Scholar 

  47. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274: 305–315.

    Article  CAS  Google Scholar 

  48. Chytil A, Magnuson MA, Wright CV, Moses HL . Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis 2002; 32: 73–75.

    Article  CAS  Google Scholar 

  49. Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT et al. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 2005; 24: 3028–3041.

    Article  CAS  Google Scholar 

  50. Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T et al. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 2010; 38: 5S–81S.

    Article  Google Scholar 

  51. Deschl U, Cattley R, Harada T, Kuttler K, Hailey J, Hartig F et al. Liver, gallbladder and exocrine pancreas. In: Mohr U (ed). International Classification of Rodent Tumors: the mouse. Springer Verlag: Heidelberg, Germany, 2001, pp 59–86.

    Chapter  Google Scholar 

  52. Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM . Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 2012; 55: 121–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by funding from Burroughs Wellcome Fund, the National Institutes of Health (RO1 DK60669-01 and P30 CA015704, WMG) and by the National Institutes of Health Interdisciplinary Training Grant (T32 CA080416, SMM). The authors thank Jean Campbell and members of the Grady laboratory for helpful suggestions. We also wish to acknowledge support from the Experimental Histopathology, Scientific Imaging and Comparative Medicine Cores at the Fred Hutchinson Cancer Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W M Grady.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, S., Carter, K., Baek, J. et al. TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene 34, 3273–3282 (2015). https://doi.org/10.1038/onc.2014.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.258

This article is cited by

Search

Quick links