Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bmi1 drives hepatocarcinogenesis by repressing the TGFβ2/SMAD signalling axis

Abstract

Bmi1 is overexpressed in one-third of hepatocellular carcinoma (HCC) patients and acts as an oncogene in hepatocarcinogenesis. However, the underlying mechanism is unclear. The role of TGFβ signalling in HCC is not well defined as well. Here, we report that TGFβ2 is a target of Bmi1 in HCC and has a tumour-suppressing role. In Bmi1-knockout mouse livers and HCC cell lines, TGFβ2/SMAD cascade proteins were upregulated. TGFβ2 expression was inversely correlated with Bmi1 expression in human and mouse HCC tissues. In vitro, Bmi1 knockdown activated TGFβ2/SMAD signalling and led to cell apoptosis via upregulation of p15 and p21. TGFβ2 inhibition rescued the inhibitory effect of Bmi1 knockdown on HCC cell survival, proliferation, and cell-cycle progression. In vivo, restoration of TGFβ2 expression blocked Bmi1/Ras-driven hepatocarcinogenesis in mice. Chromatin immunoprecipitation and luciferase reporter assays revealed that Bmi1 repressed TGFβ2 expression by binding to its promoter as a co-factor of polycomb repressor complex 1. Our findings elucidate the molecular mechanism underlying hepatic Bmi1-driven carcinogenesis and highlight the importance of TGFβ2 as a tumour suppressor in HCC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999a;397:164–8.

    CAS  PubMed  Google Scholar 

  2. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    CAS  PubMed  Google Scholar 

  4. Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Investig. 2004;113:175–9.

    CAS  PubMed  Google Scholar 

  5. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P, et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008;10:R109.

    PubMed  PubMed Central  Google Scholar 

  6. Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev. 2009;23:906–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dovey JS, Zacharek SJ, Kim CF, Lees JA. Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA. 2008;105:11857–62.

    CAS  PubMed  Google Scholar 

  8. Becker M, Korn C, Sienerth AR, Voswinckel R, Luetkenhaus K, Ceteci F, et al. Polycomb group protein Bmi1 is required for growth of RAF driven non-small-cell lung cancer. PLoS ONE. 2009;4:e4230.

    PubMed  PubMed Central  Google Scholar 

  9. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 2007;12:328–41.

    CAS  PubMed  Google Scholar 

  10. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999b;13:2678–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalra N, Kumar V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem. 2004;279:25313–9.

    CAS  PubMed  Google Scholar 

  12. Levy L, Renard CA, Wei Y, Buendia MA. Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann N Y Acad Sci. 2002;963:21–36.

    CAS  PubMed  Google Scholar 

  13. Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, et al. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res. 2009;7:1937–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 2008;68:7742–9.

    CAS  PubMed  Google Scholar 

  15. Qi S, Li B, Yang T, Liu Y, Cao S, He X, et al. Validation of Bmi1 as a therapeutic target of hepatocellular carcinoma in mice. Int J Mol Sci. 2014;15:20004–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang T, Li B, Qi S, Liu Y, Gai Y, Ye P, et al. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014;4:1096–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiba T, Seki A, Aoki R, Ichikawa H, Negishi M, Miyagi S, et al. Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice. Hepatology. 2010;52:1111–23.

    CAS  PubMed  Google Scholar 

  18. Goel HL, Chang C, Pursell B, Leav I, Lyle S, Xi HS, et al. VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov. 2012;2:906–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 2005;19:1432–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan C, He L, Kapoor A, Gillis A, Rybak AP, Cutz JC, et al. Bmi1 promotes prostate tumorigenesis via inhibitingp16(INK4A) and p14(ARF) expression. Biochim Biophys Acta. 2008;1782:642–8.

    CAS  PubMed  Google Scholar 

  22. Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer. 2001;84:1372–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J, et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res. 2008;68:6507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.

    CAS  PubMed  Google Scholar 

  25. Massague J. TGFbeta in Cancer. Cell. 2008;134:215–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008;47:2059–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan L, Xu C, Wang C, Tao J, Ho C, Jiang L, et al. Bmi1 is required for hepatic progenitor cell expansion and liver tumor development. PLoS ONE. 2012;7:e46472.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oh S, Kim E, Kang D, Kim M, Kim JH, Song JJ. Transforming growth factor-beta gene silencing using adenovirus expressing TGF-beta1 or TGF-beta2 shRNA. Cancer Gene Ther. 2013;20:94–100.

    CAS  PubMed  Google Scholar 

  29. Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 2004;203:217–24.

    CAS  PubMed  Google Scholar 

  30. Bentley ML, Corn JE, Dong KC, Phung Q, Cheung TK, Cochran AG. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 2011;30:3285–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McGinty RK, Henrici RC, Tan S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature. 2014;514:591–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157:1445–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Noma T, Glick AB, Geiser AG, O’Reilly MA, Miller J, Roberts AB, et al. Molecular cloning and structure of the human transforming growth factor-beta 2 gene promoter. Growth Factors. 1991;4:247–55.

    CAS  PubMed  Google Scholar 

  34. Datta S, Hoenerhoff MJ, Bommi P, Sainger R, Guo WJ, Dimri M, et al. Bmi-1 cooperates with H-Ras to transform human mammary epithelial cells via dysregulation of multiple growth-regulatory pathways. Cancer Res. 2007;67:10286–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoenerhoff MJ, Chu I, Barkan D, Liu ZY, Datta S, Dimri GP, et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene. 2009;28:3022–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jagani Z, Wiederschain D, Loo A, He D, Mosher R, Fordjour P, et al. The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res. 2010;70:5528–38.

    CAS  PubMed  Google Scholar 

  37. Silva J, Garcia JM, Pena C, Garcia V, Dominguez G, Suarez D, et al. Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res. 2006;12:6929–36.

    PubMed  Google Scholar 

  38. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29–36.

    CAS  PubMed  Google Scholar 

  39. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995;92:5545–9.

    CAS  PubMed  Google Scholar 

  40. Reynisdottir I, Polyak K, Iavarone A, Massague J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995;9:1831–45.

    CAS  PubMed  Google Scholar 

  41. Li CY, Suardet L, Little JB. Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J Biol Chem. 1995;270:4971–4.

    CAS  PubMed  Google Scholar 

  42. Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P, et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol Cell Biol. 1997;17:2458–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, et al. In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell. 2013;23:660–76.

    CAS  PubMed  Google Scholar 

  44. Kim RH, Lieberman MB, Lee R, Shin KH, Mehrazarin S, Oh JE, et al. Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-beta signaling. Exp Cell Res. 2010;316:2600–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–40.

    CAS  PubMed  Google Scholar 

  46. Mitchell EJ, Lee K, O’Connor-McCourt MD. Characterization of transforming growth factor-beta (TGF-beta) receptors on BeWo choriocarcinoma cells including the identification of a novel 38-kDa TGF-beta binding glycoprotein. Mol Biol Cell. 1992;3:1295–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. del Re E, Babitt JL, Pirani A, Schneyer AL, Lin HY. In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. J Biol Chem. 2004;279:22765–72.

    PubMed  Google Scholar 

  48. Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P. Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor. EMBO J. 2001;20:480–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez C, Chen F, Weinberg RA, Lodish HF. Cooperative binding of transforming growth factor (TGF)-beta 2 to the types I and II TGF-beta receptors. J Biol Chem. 1995;270:15919–22.

    CAS  PubMed  Google Scholar 

  50. Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, et al. TGF-beta1 and TGF-beta2 abundance in liver diseases of mice and men. Oncotarget. 2016;7:19499–518.

    PubMed  PubMed Central  Google Scholar 

  51. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA. 2007;104:14771–6.

    CAS  PubMed  Google Scholar 

  52. Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatology. 2012;55:833–45.

    CAS  PubMed  Google Scholar 

  53. Wojtowicz JM, Kee N. BrdU assay for neurogenesis in rodents. Nat Protoc. 2006;1:1399–405.

    CAS  PubMed  Google Scholar 

  54. Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, et al. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene. 2015;34:6079–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi Y, Tao Y, Jiang Y, Xu Y, Yan B, Chen X, et al. Nuclear epidermal growth factor receptor interacts with transcriptional intermediary factor 2 to activate cyclin D1 gene expression triggered by the oncoprotein latent membrane protein 1. Carcinogenesis. 2012;33:1468–78.

    CAS  PubMed  Google Scholar 

  56. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303–6.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (81572723 and 81872253) and the Innovation Foundation of Higher Education of China (2016JCTD109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanrui Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, Y., Wang, F. et al. Bmi1 drives hepatocarcinogenesis by repressing the TGFβ2/SMAD signalling axis. Oncogene 39, 1063–1079 (2020). https://doi.org/10.1038/s41388-019-1043-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1043-8

This article is cited by

Search

Quick links