Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1

Abstract

Resveratrol (trans-3,5,4′-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  2. Oren M . Decision making by p53: life, death and cancer. Cell Death Differ 2003; 10: 431–442.

    Article  CAS  PubMed  Google Scholar 

  3. Celotti E, Ferrarini R, Zironi R, Conte LS . Resveratrol content of some wines obtained from dried Valpolicella grapes: Recioto and Amarone. J Chromatogr A 1996; 730: 47–52.

    Article  CAS  PubMed  Google Scholar 

  4. Chen RS, Wu PL, Chiou RY . Peanut roots as a source of resveratrol. J Agric Food Chem 2002; 50: 1665–1667.

    Article  CAS  PubMed  Google Scholar 

  5. Sobolev VS, Cole RJ . Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 1999; 47: 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  6. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275: 218–220.

    Article  CAS  PubMed  Google Scholar 

  7. Delmas D, Rebe C, Lacour S, Filomenko R, Athias A, Gambert P et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 2003; 278: 41482–41490.

    Article  CAS  PubMed  Google Scholar 

  8. Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM et al. Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 2003; 102: 987–995.

    Article  CAS  PubMed  Google Scholar 

  9. Fulda S, Debatin KM . Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004; 64: 337–346.

    Article  CAS  PubMed  Google Scholar 

  10. Gill C, Walsh SE, Morrissey C, Fitzpatrick JM, Watson RW . Resveratrol sensitizes androgen independent prostate cancer cells to death-receptor mediated apoptosis through multiple mechanisms. Prostate 2007; 67: 1641–1653.

    Article  CAS  PubMed  Google Scholar 

  11. Niles RM, McFarland M, Weimer MB, Redkar A, Fu YM, Meadows GG . Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett 2003; 190: 157–163.

    Article  CAS  PubMed  Google Scholar 

  12. Pervaiz S . Resveratrol: from grapevines to mammalian biology. FASEB J 2003; 17: 1975–1985.

    Article  CAS  PubMed  Google Scholar 

  13. She QB, Bode AM, Ma WY, Chen NY, Dong Z . Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 2001; 61: 1604–1610.

    CAS  PubMed  Google Scholar 

  14. Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM . Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 1999; 59: 2596–2601.

    CAS  PubMed  Google Scholar 

  15. Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB . Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 2002; 8: 893–903.

    CAS  PubMed  Google Scholar 

  16. Parker F, Maurier F, Delumeau I, Duchesne M, Faucher D, Debussche L et al. A Ras-GTPase-activating protein SH3-domain-binding protein. Mol Cell Biol 1996; 16: 2561–2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pazman C, Mayes CA, Fanto M, Haynes SR, Mlodzik M . Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling. Development 2000; 127: 1715–1725.

    CAS  PubMed  Google Scholar 

  18. Tourriere H, Gallouzi IE, Chebli K, Capony JP, Mouaikel J, van der Geer P et al. RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 2001; 21: 7747–7760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gallouzi IE, Parker F, Chebli K, Maurier F, Labourier E, Barlat I et al. A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 1998; 18: 3956–3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prigent M, Barlat I, Langen H, Dargemont C . IkappaBalpha and IkappaBalpha/NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2. J Biol Chem 2000; 275: 36441–36449.

    Article  CAS  PubMed  Google Scholar 

  21. Barnes CJ, Li F, Mandal M, Yang Z, Sahin AA, Kumar R . Heregulin induces expression, ATPase activity, and nuclear localization of G3BP, a Ras signaling component, in human breast tumors. Cancer Res 2002; 62: 1251–1255.

    CAS  PubMed  Google Scholar 

  22. Liu Y, Zheng J, Fang W, You J, Wang J, Cui X et al. Identification of metastasis associated gene G3BP by differential display in human cancer cell sublines with different metastatic potentials G3BP as highly expressed in non-metastatic. Chin Med J (Engl) 2001; 114: 35–38.

    CAS  Google Scholar 

  23. French J, Stirling R, Walsh M, Kennedy HD . The expression of Ras-GTPase activating protein SH3 domain-binding proteins, G3BPs, in human breast cancers. Histochem J 2002; 34: 223–231.

    Article  CAS  PubMed  Google Scholar 

  24. Gautier-Bert K, Murol B, Jarrousse AS, Ballut L, Badaoui S, Petit F et al. Substrate affinity and substrate specificity of proteasomes with RNase activity. Mol Biol Rep 2003; 30: 1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Soncini C, Berdo I, Draetta G . Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease. Oncogene 2001; 20: 3869–3879.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z . USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 2010; 140: 384–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim MM, Wiederschain D, Kennedy D, Hansen E, Yuan ZM . Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene 2007; 26: 4209–4215.

    Article  CAS  PubMed  Google Scholar 

  28. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M . Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 2013; 18: 135–146.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M et al. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 2013; 33: 815–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chow SE, Wang JS, Chuang SF, Chang YL, Chu WK, Chen WS et al. Resveratrol-induced p53-independent apoptosis of human nasopharyngeal carcinoma cells is correlated with the downregulation of DeltaNp63. Cancer Gene Ther 2010; 17: 872–882.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Zhang S, He H, Zhao W, Chen J, Shao RG . GAP161 targets and downregulates G3BP to suppress cell growth and potentiate cisplaitin-mediated cytotoxicity to colon carcinoma HCT116 cells. Cancer Sci 2012; 103: 1848–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Annibaldi A, Dousse A, Martin S, Tazi J, Widmann C . Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1. PLoS One 2011; 6: e29024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oi N, Jeong CH, Nadas J, Cho YY, Pugliese A, Bode AM et al. Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A(4)hydrolase. Cancer Res 2010; 70: 9755–9764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinogen 2008; 47: 797–805.

    Article  CAS  Google Scholar 

  35. Thangima Zannat M, Bhattacharjee RB, Bag J . In the absence of cellular poly (A) binding protein, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. Biochem Biophys Res Commun 2011; 409: 171–176.

    Article  PubMed  Google Scholar 

  36. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  37. Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M . Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther 2003; 2: 753–763.

    CAS  PubMed  Google Scholar 

  38. Castresana JS, Rubio MP, Vazquez JJ, Idoate M, Sober AJ, Seizinger BR et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 1993; 55: 562–565.

    Article  CAS  PubMed  Google Scholar 

  39. Albino AP, Vidal MJ, McNutt NS, Shea CR, Prieto VG, Nanus DM et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 1994; 4: 35–45.

    Article  CAS  PubMed  Google Scholar 

  40. Hartmann A, Blaszyk H, Cunningham JS, McGovern RM, Schroeder JS, Helander SD et al. Overexpression and mutations of p53 in metastatic malignant melanomas. Int J Cancer 1996; 67: 313–317.

    Article  CAS  PubMed  Google Scholar 

  41. Sowa ME, Bennett EJ, Gygi SP, Harper JW . Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138: 389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Yibin Deng (The Hormel Institute, University of Minnesota, Austin, MN, USA) for kindly providing the expression vectors of shRNA p53. This work was supported by AgStar Minnesota (to ZD), The Hormel Foundation (to ZD) and National Institutes of Health Grants CA111536 (to ZD), CA172457 (to ZD), CA166011 (to ZD), R37 CA081064 (to ZD), CA148940 (to ZL), CA108961 (to ZL), the National Basic Research Program of China (973 Program, Grant No. 2013CB530700), National Natural Science Foundation of China (81102011, 81222029 and 31270806) and Kendall-Mayo Fellowship in Biochemistry, the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81221001) and Shanghai Science and Technology Committee Modernization of Traditional Chinese Medicine special (11DZ1973801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Lou or Z Dong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oi, N., Yuan, J., Malakhova, M. et al. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1. Oncogene 34, 2660–2671 (2015). https://doi.org/10.1038/onc.2014.194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.194

This article is cited by

Search

Quick links