Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The ShcA adaptor activates AKT signaling to potentiate breast tumor angiogenesis by stimulating VEGF mRNA translation in a 4E-BP-dependent manner

Abstract

The ShcA adaptor protein is engaged by numerous receptor tyrosine kinases (RTKs) in breast cancer cells. Once activated, RTKs phosphorylate three key tyrosine phosphorylation sites (Y239, Y240 and Y317) within ShcA that creates a docking site for Grb2/SOS and Grb2/Gab-containing complexes to activate the MAPK and AKT signaling pathways, respectively. We previously demonstrated that a tyrosine to phenylalanine substitution of the ShcA tyrosine phosphorylation sites (Shc3F-Y239/240/313F) significantly impairs breast tumor growth and angiogenesis in transgenic mouse models, in part, through the regulation of vascular endothelial growth factor (VEGF) production. Despite this fact, the underlying molecular mechanisms by which ShcA transduces pro-tumorigenic signals in breast cancer cells remain poorly defined. In this study, we demonstrate that ShcA-dependent activation of AKT, but not the RAS/MAPK pathway, induces VEGF production by bolstering VEGF mRNA translation. Accordingly, ShcA drives breast tumor growth and angiogenesis in vivo in a 4E-BP-dependent manner. These findings establish ShcA as a biological bridge that links AKT activation downstream of RTKs to cap-dependent VEGF mRNA translation in order to promote mammary tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dankort D, Jeyabalan N, Jones N, Dumont DJ, Muller WJ . Multiple ErbB-2/Neu Phosphorylation Sites Mediate Transformation through Distinct Effector Proteins. J Biol Chem 2001; 276: 38921–38928.

    Article  CAS  Google Scholar 

  2. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D . The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 1993; 363: 83–85.

    Article  CAS  Google Scholar 

  3. Salcini AE, McGlade J, Pelicci G, Nicoletti I, Pawson T, Pelicci PG . Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 1994; 9: 2827–2836.

    CAS  PubMed  Google Scholar 

  4. van der Geer P, Wiley S, Gish GD, Pawson T . The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr Biol 1996; 6: 1435–1444.

    Article  CAS  Google Scholar 

  5. Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol 2000; 20: 7109–7120.

    Article  CAS  Google Scholar 

  6. Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 1992; 360: 689–692.

    Article  CAS  Google Scholar 

  7. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  Google Scholar 

  8. Hardy WR, Li L, Wang Z, Sedy J, Fawcett J, Frank E et al. Combinatorial ShcA docking interactions support diversity in tissue morphogenesis. Science 2007; 317: 251–256.

    Article  CAS  Google Scholar 

  9. Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD et al. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 2008; 27: 910–920.

    Article  CAS  Google Scholar 

  10. Xiong S, Grijalva R, Zhang L, Nguyen NT, Pisters PW, Pollock RE et al. Up-regulation of vascular endothelial growth factor in breast cancer cells by the heregulin-beta1-activated p38 signaling pathway enhances endothelial cell migration. Cancer Res 2001; 61: 1727–1732.

    CAS  PubMed  Google Scholar 

  11. Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P et al. ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 2006; 66: 2028–2037.

    Article  CAS  Google Scholar 

  12. Maity A, Pore N, Lee J, Solomon D, O'Rourke DM . Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3'-kinase and distinct from that induced by hypoxia. Cancer Res 2000; 60: 5879–5886.

    CAS  PubMed  Google Scholar 

  13. Casanova ML, Larcher F, Casanova B, Murillas R, Fernandez-Acenero MJ, Villanueva C et al. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res 2002; 62: 3402–3407.

    CAS  PubMed  Google Scholar 

  14. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  Google Scholar 

  15. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature 1994; 371: 762–767.

    Article  CAS  Google Scholar 

  16. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    Article  CAS  Google Scholar 

  17. Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS . Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 1996; 65: 785–790.

    Article  CAS  Google Scholar 

  18. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    Article  CAS  Google Scholar 

  19. Wolf G, Trub T, Ottinger E, Groninga L, Lynch A, White MF et al. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem 1995; 270: 27407–27410.

    Article  CAS  Google Scholar 

  20. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N . Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 2010; 1804: 433–439.

    Article  CAS  Google Scholar 

  21. Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H et al. Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 2012; 46: 847–858.

    Article  CAS  Google Scholar 

  22. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997; 16: 1909–1920.

    Article  CAS  Google Scholar 

  23. Warner JR, Knopf PM, Rich A . A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci USA 1963; 49: 122–129.

    Article  CAS  Google Scholar 

  24. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485: 55–61.

    Article  CAS  Google Scholar 

  25. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM . A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012; 485: 109–113.

    Article  CAS  Google Scholar 

  26. Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci USA 2012; 109: 8977–8982.

    Article  CAS  Google Scholar 

  27. Shama S, Avni D, Frederickson RM, Sonenberg N, Meyuhas O . Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Gene Expr 1995; 4: 241–252.

    CAS  PubMed  Google Scholar 

  28. Tcherkezian JCM, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, Roux PP . Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA Translation. Genes Dev 2014; 28.

    Article  CAS  Google Scholar 

  29. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004; 5: 553–563.

    Article  CAS  Google Scholar 

  30. Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 2009; 16: 439–446.

    Article  CAS  Google Scholar 

  31. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10: 484–486.

    Article  CAS  Google Scholar 

  32. Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 2012; 72: 6468–6476.

    Article  CAS  Google Scholar 

  33. Liang Y, Brekken RA, Hyder SM . Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocri Relat Cancer 2006; 13: 905–919.

    Article  CAS  Google Scholar 

  34. Christoffersson G, Vagesjo E, Vandooren J, Liden M, Massena S, Reinert RB et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012; 120: 4653–4662.

    Article  CAS  Google Scholar 

  35. Li C, Liu B, Dai Z, Tao Y . Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). Cancer Biol Ther 2011; 12: 872–880.

    Article  CAS  Google Scholar 

  36. Salnikov AV, Heldin NE, Stuhr LB, Wiig H, Gerber H, Reed RK et al. Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int J Cancer 2006; 119: 2795–2802.

    Article  CAS  Google Scholar 

  37. Nasr Z, Robert F, Porco JA Jr, Muller WJ, Pelletier J . eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 2013; 32: 861–871.

    Article  CAS  Google Scholar 

  38. Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 2007; 28: 501–512.

    Article  CAS  Google Scholar 

  39. Flowers A, Chu QD, Panu L, Meschonat C, Caldito G, Lowery-Nordberg M et al. Eukaryotic initiation factor 4E overexpression in triple-negative breast cancer predicts a worse outcome. Surgery 2009; 146: 220–226.

    Article  Google Scholar 

  40. Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res 2011; 17: 2874–2884.

    Article  CAS  Google Scholar 

  41. Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD et al. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 2007; 13: 81–89.

    Article  CAS  Google Scholar 

  42. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    Article  CAS  Google Scholar 

  43. Zindy P, Berge Y, Allal B, Filleron T, Pierredon S, Cammas A et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res 2011; 71: 4068–4073.

    Article  CAS  Google Scholar 

  44. Garcia-Garcia C, Ibrahim YH, Serra V, Calvo MT, Guzman M, Grueso J et al. Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy. Clin Cancer Res 2012; 18: 2603–2612.

    Article  CAS  Google Scholar 

  45. Miller TW, Forbes JT, Shah C, Wyatt SK, Manning HC, Olivares MG et al. Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res 2009; 15: 7266–7276.

    Article  CAS  Google Scholar 

  46. Davol PA, Bagdasaryan R, Elfenbein GJ, Maizel AL, Frackelton AR Jr . Shc proteins are strong, independent prognostic markers for both node-negative and node-positive primary breast cancer. Cancer Res 2003; 63: 6772–6783.

    CAS  PubMed  Google Scholar 

  47. Ursini-Siegel J, Cory S, Zuo D, Hardy WR, Rexhepaj E, Lam S et al. Receptor tyrosine kinase signaling favors a protumorigenic state in breast cancer cells by inhibiting the adaptive immune response. Cancer Res 2010; 70: 7776–7787.

    Article  CAS  Google Scholar 

  48. Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V et al. Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol 2007; 27: 6361–6371.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Peter Siegel for critical reading of the manuscript and Dr Sonia del Rincon for the VEGF antibody. This work was supported by a Canadian Institutes of Health Research (CIHR) grant (MOP-111143) to JU-S. YKI is the recipient of a TD/LDI studentship. JRH is the recipient of a McGill Integrated Research Training Program studentship. JU-S and IT are recipients of a CIHR New Investigator Salary Support award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ursini-Siegel.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, Y., La Selva, R., Gandin, V. et al. The ShcA adaptor activates AKT signaling to potentiate breast tumor angiogenesis by stimulating VEGF mRNA translation in a 4E-BP-dependent manner. Oncogene 34, 1729–1735 (2015). https://doi.org/10.1038/onc.2014.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.110

This article is cited by

Search

Quick links