Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elafin drives poor outcome in high-grade serous ovarian cancers and basal-like breast tumors

Abstract

High-grade serous ovarian carcinoma (HGSOC) and basal-like breast cancer (BLBC) share many features including TP53 mutations, genomic instability and poor prognosis. We recently reported that Elafin is overexpressed by HGSOC and is associated with poor overall survival. Here, we confirm that Elafin overexpression is associated with shorter survival in 1000 HGSOC patients. Elafin confers a proliferative advantage to tumor cells through the activation of the MAP kinase pathway. This mitogenic effect can be neutralized by RNA interference, specific antibodies and a MEK inhibitor. Elafin expression in patient-derived samples was also associated with chemoresistance and strongly correlates with bcl-xL expression. We extended these findings into the examination of 1100 primary breast tumors and six breast cancer cell lines. We observed that Elafin is overexpressed and secreted specifically by BLBC tumors and cell lines, leading to a similar mitogenic effect through activation of the MAP kinase pathway. Here too, Elafin overexpression is associated with poor overall survival, suggesting that it may serve as a biomarker and therapeutic target in this setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mavaddat N, Barrowdale D, Andrulis IL, Domchek SM, Eccles D, Nevanlinna H et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 2012; 21: 134–147.

    Article  CAS  PubMed  Google Scholar 

  2. Rakha EA, Reis-Filho JS, Ellis IO . Basal-like breast cancer: a critical review. J Clin Oncol 2008; 26: 2568–2581.

    Article  PubMed  Google Scholar 

  3. Manie E, Vincent-Salomon A, Lehmann-Che J, Pierron G, Turpin E, Warcoin M et al. High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res 2009; 69: 663–671.

    Article  CAS  PubMed  Google Scholar 

  4. Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F et al. TCGA: Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  CAS  Google Scholar 

  5. Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR . Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 2010; 4: 255–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  CAS  Google Scholar 

  7. Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian R et al. Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res 2012; 18: 5806–5815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams SE, Brown TI, Roghanian A, Sallenave JM . SLPI and elafin: one glove, many fingers. Clin Sci (Lond) 2006; 110: 21–35.

    Article  CAS  Google Scholar 

  9. Pfundt R, van Ruissen F, van Vlijmen-Willems IM, Alkemade HA, Zeeuwen PL, Jap PH et al. Constitutive and inducible expression of SKALP/elafin provides anti-elastase defense in human epithelia. The J Clin Invest 1996; 98: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh M, Shen Z, Fahey JV, Cu-Uvin S, Mayer K, Wira CR . Trappin-2/Elafin: a novel innate anti-human immunodeficiency virus-1 molecule of the human female reproductive tract. Immunology 2010; 129: 207–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kulasingam V, Diamandis EP . Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics 2007; 6: 1997–2011.

    Article  CAS  PubMed  Google Scholar 

  12. Paczesny S, Braun TM, Levine JE, Hogan J, Crawford J, Coffing B et al. Elafin is a biomarker of graft-versus-host disease of the skin. Sci Translational Med 2010; 2: 13ra2.

    Article  Google Scholar 

  13. Levine JE, Logan BR, Wu J, Alousi AM, Bolanos-Meade J, Ferrara JL et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood 2012; 119: 3854–3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drapkin R, von Horsten HH, Lin Y, Mok SC, Crum CP, Welch WR et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res 2005; 65: 2162–2169.

    Article  CAS  PubMed  Google Scholar 

  15. Bouchard D, Morisset D, Bourbonnais Y, Tremblay GM . Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol 2006; 7: 167–174.

    Article  CAS  PubMed  Google Scholar 

  16. Hellstrom I, Raycraft J, Hayden-Ledbetter M, Ledbetter JA, Schummer M, McIntosh M et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 2003; 63: 3695–3700.

    PubMed  Google Scholar 

  17. Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 2009; 112: 40–46.

    Article  CAS  PubMed  Google Scholar 

  18. Clauss A, Lilja H, Lundwall A . A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem J 2002; 368 (Pt 1): 233–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lundwall A, Clauss A . Identification of a novel protease inhibitor gene that is highly expressed in the prostate. Biochem biophysi Research Commun 2002; 290: 452–456.

    Article  CAS  Google Scholar 

  20. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  CAS  Google Scholar 

  21. Wei H, Hellstrom KE, Hellstrom I . Elafin selectively regulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol 2012; 125: 727–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clauss A, Ng V, Liu J, Piao H, Russo M, Vena N et al. Overexpression of elafin in ovarian carcinoma is driven by genomic gains and activation of the nuclear factor kappaB pathway and is associated with poor overall survival. Neoplasia 2010; 12: 161–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gyorffy B, Lanczky A, Szallasi Z . Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 2012; 19: 197–208.

    Article  CAS  PubMed  Google Scholar 

  24. Verrier T, Solhonne B, Sallenave JM, Garcia-Verdugo I . The WAP protein Trappin-2/Elafin: a handyman in the regulation of inflammatory and immune responses. Int J Biochem Cell Biol 2012; 44: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  25. Doucet A, Bouchard D, Janelle MF, Bellemare A, Gagne S, Tremblay GM et al. Characterization of human pre-elafin mutants: full antipeptidase activity is essential to preserve lung tissue integrity in experimental emphysema. Biochem J 2007; 405: 455–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Askenazi M, Li S, Singh S, Marto JA . Pathway Palette: a rich internet application for peptide-, protein- and network-oriented analysis of MS data. Proteomics 2010; 10: 1880–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J . Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 1998; 273: 31327–31336.

    Article  CAS  PubMed  Google Scholar 

  28. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006; 5: 2512–2521.

    Article  CAS  PubMed  Google Scholar 

  29. Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z et al. A Technical Assessment of the Utility of Reverse Phase Protein Arrays for the Study of the Functional Proteome in Non-microdissected Human Breast Cancers. Clin Proteomics 2010; 6: 129–151.

    Article  CAS  PubMed  Google Scholar 

  30. Williams J, Lucas PC, Griffith KA, Choi M, Fogoros S, Hu YY et al. Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol 2005; 96: 287–295.

    Article  CAS  PubMed  Google Scholar 

  31. Jinawath N, Vasoontara C, Jinawath A, Fang X, Zhao K, Yap KL et al. Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PloS One 2010; 5: e11198.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009; 15: 1417–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huper G, Marks JR . Isogenic normal basal and luminal mammary epithelial isolated by a novel method show a differential response to ionizing radiation. Cancer Res 2007; 67: 2990–3001.

    Article  CAS  PubMed  Google Scholar 

  34. Pazaiti A, Fentiman IS . Basal phenotype breast cancer: implications for treatment and prognosis. Womens Health (Lond Engl) 2011; 7: 181–202.

    Article  Google Scholar 

  35. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  36. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006; 9: 121–132.

    Article  CAS  PubMed  Google Scholar 

  37. Li Q, Eklund AC, Juul N, Haibe-Kains B, Workman CT, Richardson AL et al. Minimising immunohistochemical false negative ER classification using a complementary 23 gene expression signature of ER status. PLoS One 2010; 5: e15031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7: R953–R964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207–3214.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008; 68: 5405–5413.

    Article  CAS  PubMed  Google Scholar 

  41. Bittner M Expression project for Oncology (expO). [cited; Available from www.intgen.org/expo/].

  42. Haibe-Kains B, Desmedt C, Loi S, Culhane AC, Bontempi G, Quackenbush J et al. A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst 2012; 104: 311–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  44. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang M, Zou Z, Maass N, Sager R . Differential expression of elafin in human normal mammary epithelial cells and carcinomas is regulated at the transcriptional level. Cancer Res 1995; 55: 2537–2541.

    CAS  PubMed  Google Scholar 

  46. Aung G, Niyonsaba F, Ushio H, Ikeda S, Okumura K, Ogawa H . Elafin and secretory leukocyte protease inhibitor stimulate the production of cytokines and chemokines by human keratinocytes via MAPK/ERK and NF-kappaB activation. J Dermatol Sci 2011; 63: 128–131.

    CAS  PubMed  Google Scholar 

  47. Davis RJ . Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  48. Morton S, Davis RJ, Cohen P . Signalling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett 2004; 572: 177–183.

    Article  CAS  PubMed  Google Scholar 

  49. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007; 13 (15 Pt 1): 4429–4434.

    Article  PubMed  Google Scholar 

  50. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  51. Saidi A, Javerzat S, Bellahcene A, De Vos J, Bello L, Castronovo V et al. Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int J Cancer 2008; 122: 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  52. Caruso JA, Hunt KK, Keyomarsi K . The neutrophil elastase inhibitor elafin triggers rb-mediated growth arrest and caspase-dependent apoptosis in breast cancer. Cancer Res 2010; 70: 7125–7136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yokota T, Bui T, Liu Y, Yi M, Hunt KK, Keyomarsi K . Differential regulation of elafin in normal and tumor-derived mammary epithelial cells is mediated by CCAAT/enhancer binding protein beta. Cancer Res 2007; 67: 11272–11283.

    Article  CAS  PubMed  Google Scholar 

  54. Levanon K, Crum C, Drapkin R . New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 2008; 26: 5284–5293.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Karst AM, Drapkin R . Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010; 2010: 932371.

    Article  PubMed  Google Scholar 

  56. Karst AM, Levanon K, Drapkin R . Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 2011; 108 (18): 7547–7552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levanon K, Ng V, Piao HY, Zhang Y, Chang MC, Roh MH et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 2010; 29: 1103–1113.

    Article  CAS  PubMed  Google Scholar 

  58. Shaw L, Wiedow O . Therapeutic potential of human elafin. Biochem Soc Trans 2011; 39: 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  59. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, Garg B, Adelmant G, Webber JT et al. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics 2011; 10: O111 011064.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vermeer PD, Bell M, Lee K, Vermeer DW, Wieking BG, Bilal E et al. ErbB2, EphrinB1, Src kinase and PTPN13 signaling complex regulates MAP kinase signaling in human cancers. PLoS One 2012; 7: e30447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gautier L, Cope L, Bolstad BM, Irizarry RA . affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307–315.

    Article  CAS  PubMed  Google Scholar 

  62. Wickham H . ggplot2: elegant graphics for data analysis. Springer, New York, 2009.

    Book  Google Scholar 

  63. Saldanha AJ . Java Treeview—extensible visualization of microarray data. Bioinformatics 2004; 20: 3246–3248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Michelle Hirsch for critical review of the manuscript, Laura Selfors of biocomputing analyzes of the RPPA data, and members of the Drapkin laboratory for fruitful discussions. This work was supported by the NIH/NCI SPORE in OC P50-CA105009 (RD), U01 CA-152990 (RD), R21 CA-156021 (RD); NIH/NINDS P01 NS047572 (JM), the Honorable Tina Brozman ‘Tina’s Wish’ Foundation (JM, RD), the Dr Miriam and Sheldon G. Adelson Medical Research Foundation (GBM and RD), The Robert and Debra First Fund (RD), The Gamel Family Fund (RD), the Ovarian Cancer Research Fund (RD), The Madeline Franchi Ovations for the Cure Fund (AC), the Mary Kay Foundation (RD), the Sandy Rollman Ovarian Cancer Foundation (RD), the Dana-Farber Cancer Institute (DFCI) Strategic Initiative (JM), the Executive Council of the Susan Smith Center for Women’s Cancers at the DFCI, the Triple Negative Breast Cancer Foundation (SG), and the New Jersey Commission on Cancer Research (SG). SILG is a recipient of grants from Arthur Sachs/Fulbright/Harvard, La Fondation Philippe and La Fondation de France—‘Recherche clinique en cancérologie – Aide à la mobilité des chercheurs’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Drapkin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labidi-Galy, S., Clauss, A., Ng, V. et al. Elafin drives poor outcome in high-grade serous ovarian cancers and basal-like breast tumors. Oncogene 34, 373–383 (2015). https://doi.org/10.1038/onc.2013.562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.562

Keywords

This article is cited by

Search

Quick links