Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions

Abstract

Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) are two pathologies associated with KS herpes virus (KSHV/HHV-8) infection. KSHV genome contains several oncogenes, among which, the viral G-protein-coupled receptor (vGPCR open reading frame 74) has emerged as a major factor in KS pathogenicity. Indeed, vGPCR is a constitutively active receptor, whose expression is sufficient to drive cell transformation in vitro and tumour development in mice. However, neither the role of vGPCR in KSHV-infected B-lymphocytes nor the molecular basis for its constitutive activation is well understood. Here, we show that vGPCR expression contributes to nuclear factor-κB (NF-κB)-dependent cellular survival in both PEL cells and primary B cells from HIV-negative KS patients. We further identified within vGPCR an AP2 consensus binding motif, Y326GLF, that directs its localization between the plasma membrane and clathrin-coated vesicles. The introduction of a mutation in this site (Y326A) increased NF-κB activity and proinflammatory cytokines production. This correlated with exacerbated morphological rearrangement, migration and proliferation of non-infected monocytes. Collectively, our work raises the possibility that KSHV-infected B-lymphocytes use vGPCR to impact ultimately the immune response and communication within the tumour microenvironment in KSHV-associated pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lanternier F, Lebbe C, Schartz N, Farhi D, Marcelin AG, Kerob D et al. Kaposi's sarcoma in HIV-negative men having sex with men. AIDS 2008; 22: 1163–1168.

    Article  CAS  PubMed  Google Scholar 

  2. Lodi S, Guiguet M, Costagliola D, Fisher M, de Luca A, Porter K . Kaposi sarcoma incidence and survival among HIV-infected homosexual men after HIV seroconversion. J Natl Cancer Inst 2010; 102: 784–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mesri EA, Cesarman E, Boshoff C . Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010; 10: 707–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  5. Boshoff C, Whitby D, Hatziioannou T, Fisher C, van der Walt J, Hatzakis A et al. Kaposi's-sarcoma-associated herpesvirus in HIV-negative Kaposi's sarcoma. Lancet 1995; 345: 1043–1044.

    Article  CAS  PubMed  Google Scholar 

  6. Whitby D, Howard MR, Tenant-Flowers M, Brink NS, Copas A, Boshoff C et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet 1995; 346: 799–802.

    Article  CAS  PubMed  Google Scholar 

  7. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 1996; 149: 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MA, Posnett DN et al. Human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med 1996; 183: 2385–2390.

    Article  CAS  PubMed  Google Scholar 

  9. Chen YB, Rahemtullah A, Hochberg E . Primary effusion lymphoma. Oncologist 2007; 12: 569–576.

    Article  PubMed  Google Scholar 

  10. An J, Sun Y, Fisher M, Rettig MB . Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia 2004; 18: 1699–1704.

    Article  CAS  PubMed  Google Scholar 

  11. Matta H, Chaudhary PM . Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci USA 2004; 101: 9399–9404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ et al. NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 2006; 107: 3295–3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montaner S, Sodhi A, Servitja JM, Ramsdell AK, Barac A, Sawai ET et al. The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 2004; 104: 2903–2911.

    Article  CAS  PubMed  Google Scholar 

  14. Grossmann C, Podgrabinska S, Skobe M, Ganem D . Activation of NF-kappaB by the latent vFLIP gene of Kaposi's sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol 2006; 80: 7179–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caselli E, Fiorentini S, Amici C, Di Luca D, Caruso A, Santoro MG . Human herpesvirus 8 acute infection of endothelial cells induces monocyte chemoattractant protein 1-dependent capillary-like structure formation: role of the IKK/NF-kappaB pathway. Blood 2007; 109: 2718–2726.

    CAS  PubMed  Google Scholar 

  16. Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS . An NF-kappaB gene expression signature contributes to Kaposi's sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 2008; 27: 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  17. Guasparri I, Keller SA, Cesarman E . KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 2004; 199: 993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM . The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Ikappa B kinase complex. J Biol Chem 2002; 277: 13745–13751.

    Article  CAS  PubMed  Google Scholar 

  19. Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C et al. KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 2003; 116 (Part 18): 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  20. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 3: 23–36.

    Article  CAS  PubMed  Google Scholar 

  21. Chugh P, Matta H, Schamus S, Zachariah S, Kumar A, Richardson JA et al. Constitutive NF-kappaB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci USA 2005; 102: 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ballon G, Chen K, Perez R, Tam W, Cesarman E . Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest 2011; 121: 1141–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boshoff C . Unraveling virus-induced lymphomagenesis. J Clin Invest 2011; 121: 838–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sin SH, Dittmer DP . Viral latency locus augments B cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia and lymphoma. Blood 2013; 121: 2952–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E . Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 1997; 385: 347–350.

    Article  CAS  PubMed  Google Scholar 

  26. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998; 391: 86–89.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenkilde MM, Kledal TN, Holst PJ, Schwartz TW . Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem 2000; 275: 26309–26315.

    Article  CAS  PubMed  Google Scholar 

  28. Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 2000; 191: 445–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S et al. Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell 2003; 3: 131–143.

    Article  CAS  PubMed  Google Scholar 

  30. Martin D, Galisteo R, Molinolo AA, Wetzker R, Hirsch E, Gutkind JS . PI3Kgamma mediates Kaposi's sarcoma-associated herpesvirus vGPCR-induced sarcomagenesis. Cancer Cell 2011; 19: 805–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Couty JP, Geras-Raaka E, Weksler BB, Gershengorn MC . Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple pathways in endothelial cells. J Biol Chem 2001; 276: 33805–33811.

    Article  CAS  PubMed  Google Scholar 

  32. Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R . Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J Virol 2002; 76: 1744–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dwyer J, Le Guelte A, Galan Moya EM, Sumbal M, Carlotti A, Douguet L et al. Remodeling of VE-cadherin junctions by the human herpes virus 8G-protein coupled receptor. Oncogene 2011; 30: 190–200.

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz M, Murphy PM . Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 2001; 167: 505–513.

    Article  CAS  PubMed  Google Scholar 

  35. Cannon M, Philpott NJ, Cesarman E . The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 2003; 77: 57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong PP et al. Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe 2008; 4: 470–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montaner S, Kufareva I, Abagyan R, Gutkind JS . Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 2013; 53: 331–354.

    Article  CAS  PubMed  Google Scholar 

  38. de Oliveira DE, Ballon G, Cesarman E . NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol 2010; 18: 248–257.

    Article  CAS  PubMed  Google Scholar 

  39. Chang HH, Ganem D . A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe 2013; 13: 429–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu F, Xia Y, Parker AS, Verma IM . IKK biology. Immunol Rev. 2012; 246: 239–253.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marchese A, Chen C, Kim YM, Benovic JL . The ins and outs of G protein-coupled receptor trafficking. Trends Biochem Sci 2003; 28: 369–376.

    Article  CAS  PubMed  Google Scholar 

  42. Waugh DJJ, Wilson C . The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741.

    Article  CAS  PubMed  Google Scholar 

  43. Hassman LM, Ellison TJ, Kedes DH . KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest 2011; 121: 752–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Myoung J, Ganem D . Active lytic infection of human primary tonsillar B cells by KSHV and its noncytolytic control by activated CD4+ T cells. J Clin Invest 2011; 121: 1130–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cannon ML, Cesarman E . The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene 2004; 23: 514–523.

    Article  CAS  PubMed  Google Scholar 

  46. Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA et al. Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 2004; 101: 4821–4826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsat A . Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 1999; 112 (Part 9): 1303–1311.

    CAS  PubMed  Google Scholar 

  48. Dwyer J, Hebda JK, Le Guelte A, Galan-Moya EM, Smith SS, Azzi S et al. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 2012; 7: e45562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan W, Martin D, Gutkind JS . The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 2006; 281: 39542–39549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of JG laboratory for comments on the manuscript. We are grateful to Dr A Benmerah (Institut Necker, Paris, France) for the EPS15 constructs and helpful discussion and to C Catherinet (INSA, Rennes, France) for technical support. This research was funded by: ANR JCJC, Fondation ARC, Fondation pour la Recherche Medicale, INCA_6508, Ligue nationale contre le cancer comite de Paris and a Marie Curie International Reintegration Grant within The Seventh Framework Program. SA, SSS and JD are supported by postdoctoral fellowships from Fondation ARC, Canceropole Ile-de-France and ANRS, respectively. JKH is supported by a doctoral fellowship from Universite Paris Descartes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Gavard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

SA performed experiments, analysed data and drafted the manuscript; SSS performed experiments, analysed data and drafted the manuscript; JD performed experiments, analysed data and drafted the manuscript; HML performed experiments; CA performed experiments and analysed data; JKH performed experiments; ND collected clinical samples; NB analysed data and drafted the manuscript; JG designed research, performed experiments, analysed data and wrote the manuscript.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzi, S., Smith, S., Dwyer, J. et al. YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 33, 5609–5618 (2014). https://doi.org/10.1038/onc.2013.503

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.503

Keywords

This article is cited by

Search

Quick links