Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FATS is an E2-independent ubiquitin ligase that stabilizes p53 and promotes its activation in response to DNA damage

Abstract

Ubiquitin linkage is critical in directing the cellular fate of a ubiquitinated protein. Although K48-linked polyubiquitination of p53 leads to its degradation, whether K48-independent ubiquitin linkages are involved in p53 activation remains unknown. Here, we show that FATS acts as a p53 activator by inhibiting Mdm2 binding to p53 and stimulating non-proteolytic polyubiquitination of p53. Knockdown of FATS impairs p53 stabilization and activation in response to DNA damage. Furthermore, the NH2-terminal domain of FATS is sufficient to exhibit ubiquitin ligase (E3) activity and assemble ubiquitin polymers through K11-, K29- and K63-linkages, independently of the ubiquitin-conjugating enzyme (E2). FATS promotes p53-dependent transcription of p21, leading to robust checkpoint response. The E3 activity of FATS is required for promoting p53 stability and activation in response to DNA damage. Our findings reveal K48-linkage-independent non-linear polyubiquitination of p53 as a new barcode for p53 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rotin D, Kumar S . Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10: 398–409.

    Article  CAS  Google Scholar 

  2. Kerscher O, Felberbaum R, Hochstrasser M . Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22: 159–180.

    Article  CAS  Google Scholar 

  3. Mukhopadhyay D, Riezman H . Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007; 315: 201–205.

    Article  CAS  Google Scholar 

  4. Ulrich HD, Walden H . Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Boil 2010; 11: 479–489.

    Article  CAS  Google Scholar 

  5. Pickart CM, Fushman D . Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004; 8: 610–616.

    Article  CAS  Google Scholar 

  6. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137: 133–145.

    Article  CAS  Google Scholar 

  7. Lee JT, Gu W . The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 2010; 17: 86–92.

    Article  CAS  Google Scholar 

  8. Jones SN, Roe AE, Donehower LA, Bradley A . Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  CAS  Google Scholar 

  9. Montes de Oca Luna R, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  Google Scholar 

  10. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  Google Scholar 

  11. Shieh SY, Ikeda M, Taya Y, Prives C . DNA damage-induced phosphorylation of p53 alleviates inhibition by Mdm2. Cell 1997; 91: 325–334.

    Article  CAS  Google Scholar 

  12. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21: 6236–6245.

    Article  CAS  Google Scholar 

  13. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    Article  CAS  Google Scholar 

  14. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429: 86–92.

    Article  CAS  Google Scholar 

  15. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112: 779–791.

    Article  CAS  Google Scholar 

  16. Wu X, Bayle JH, Olson D, Levine AJ . The p53-Mdm2 autoregulatory feedback loop. Genes Dev 1993; 7: 1126–1132.

    Article  CAS  Google Scholar 

  17. Jain AK, Barton MC . Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther 2010; 10: 665–672.

    Article  CAS  Google Scholar 

  18. Migliorini D, Bogaerts S, Defever D, Vyas R, Denecker G, Radaelli E et al. COP1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Invest 2011; 121: 1329–1343.

    Article  CAS  Google Scholar 

  19. Jung YS, Hakem A, Hakem R, Chen X . Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis. Mol Cell Biol 2011; 31: 3997–4006.

    Article  CAS  Google Scholar 

  20. Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006; 127: 775–788.

    Article  CAS  Google Scholar 

  21. Durkin SG, Glover TW . Chromosome fragile sites. Annu Rev Genet 2007; 41: 169–192.

    Article  CAS  Google Scholar 

  22. Ma K, Qiu L, Mrasek K, Zhang J, Liehr T, Quintana LG et al. Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 2012; 13: 11974–11999.

    Article  CAS  Google Scholar 

  23. Li Z, Zhang Q, Mao JH, Weise A, Mrasek K, Fan X et al. An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis. Oncogene 2010; 29: 2659–2671.

    Article  CAS  Google Scholar 

  24. Zhang X, Zhang Q, Zhang J, Qiu L, Yan S, Feng J et al. FATS is a transcriptional target of p53 and associated with antitumor activity. Mol Cancer 2010; 9: 244.

    Article  Google Scholar 

  25. Zhang J, Gu L, Zhao L, Zhang X, Qiu L, Li Z . Expression level of novel tumor suppressor gene FATS is associated with the outcome of node positive breast cancer. Chin Med J 2011; 124: 2894–2898.

    CAS  PubMed  Google Scholar 

  26. Tian Y, Zhang J, Yan S, Qiu L, Li Z . FATS expression is associated with cisplatin sensitivity in non small cell lung cancer. Lung Cancer 2012; 76: 416–422.

    Article  Google Scholar 

  27. Mao JH, Li J, Jiang T, Li Q, Wu D, Perez-Losada J et al. Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene 2005; 24: 7924–7934.

    Article  CAS  Google Scholar 

  28. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 2004; 279: 42169–42181.

    Article  CAS  Google Scholar 

  29. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE . UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011; 474: 105–108.

    Article  CAS  Google Scholar 

  30. Laine A, Ronai Z . Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 2007; 26: 1477–1483.

    Article  CAS  Google Scholar 

  31. Laine A, Topisirovic I, Zhai D, Reed JC, Borden KL, Ronai Z . Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 2006; 26: 8901–8913.

    Article  CAS  Google Scholar 

  32. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  Google Scholar 

  33. Ye Y, Rape M . Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10: 755–764.

    Article  CAS  Google Scholar 

  34. Hurley JH, Lee S, Prag G . Ubiquitin-binding domains. Biochem J 2006; 399: 361–372.

    Article  CAS  Google Scholar 

  35. Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C . A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-mediated apoptosis in glioblastoma. Cancer Discov 2012; 2: 140–155.

    Article  CAS  Google Scholar 

  36. Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit REA . UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 2006; 21: 873–880.

    Article  CAS  Google Scholar 

  37. Wu H, Pomeroy SL, Ferreira M, Teider N, Mariani J, Nakayama KI et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med 2011; 17: 347–355.

    Article  CAS  Google Scholar 

  38. Najafi SM, Li Z, Makino K, Shao R, Hung MC . The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun 2003; 305: 1099–1104.

    Article  CAS  Google Scholar 

  39. Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM et al. Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res 2004; 64: 9080–9085.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr X Lu (The University of Texas MD Anderson Cancer Center, USA) for providing us with HA-Mdm2 plasmid. This work was supported by grants from Ministry of Science and Technology of China 973-program concept award (2009CB526407 to ZL), National Natural Science Foundation of China (81272283 to ZL), and Tianjin Municipal Science and Technology Foundation (10JCZDJC18600 to ZL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Qiu, L., Ma, K. et al. FATS is an E2-independent ubiquitin ligase that stabilizes p53 and promotes its activation in response to DNA damage. Oncogene 33, 5424–5433 (2014). https://doi.org/10.1038/onc.2013.494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.494

Keywords

This article is cited by

Search

Quick links