Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CTGF is a therapeutic target for metastatic melanoma

Abstract

Metastatic melanoma remains a devastating disease with a 5-year survival rate of less than five percent. Despite recent advances in targeted therapies for melanoma, only a small percentage of melanoma patients experience durable remissions. Therefore, it is critical to identify new therapies for the treatment of advanced melanoma. Here, we define connective tissue growth factor (CTGF) as a therapeutic target for metastatic melanoma. Clinically, CTGF expression correlates with tumor progression and is strongly induced by hypoxia through HIF-1 and HIF-2-dependent mechanisms. Genetic inhibition of CTGF in human melanoma cells is sufficient to significantly reduce orthotopic tumor growth, as well as metastatic tumor growth in the lung of severe combined immunodeficient (SCID) mice. Mechanistically, inhibition of CTGF decreased invasion and migration associated with reduced matrix metalloproteinase-9 expression. Most importantly, the anti-CTGF antibody, FG-3019, had a profound inhibitory effect on the progression of established metastatic melanoma. These results offer the first preclinical validation of anti-CTGF therapy for the treatment of advanced melanoma and underscore the importance of tumor hypoxia in melanoma progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V . Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 2006; 12 (7 Pt 2): 2301s–2307s.

    Article  CAS  Google Scholar 

  2. Aguissa-Toure AH, Li G . Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci 2012; 69: 1475–1491.

    Article  CAS  Google Scholar 

  3. Dahl C, Guldberg P . The genome and epigenome of malignant melanoma. APMIS 2007; 115: 1161–1176.

    Article  CAS  Google Scholar 

  4. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367: 1694–1703.

    Article  CAS  Google Scholar 

  5. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487: 505–509.

    Article  CAS  Google Scholar 

  6. Bedogni B, Powell MB . Hypoxia, melanocytes and melanoma—survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 2009; 22: 166–174.

    Article  CAS  Google Scholar 

  7. Lartigau E, Randrianarivelo H, Avril MF, Margulis A, Spatz A, Eschwege F et al. Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 1997; 7: 400–406.

    Article  CAS  Google Scholar 

  8. Finger EC, Giaccia AJ . Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 2010; 29: 285–293.

    Article  CAS  Google Scholar 

  9. Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME et al. Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Ann N Y Acad Sci 2005; 1059: 184–195.

    Article  CAS  Google Scholar 

  10. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  Google Scholar 

  11. Shweiki D, Itin A, Soffer D, Keshet E . Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.

    Article  CAS  Google Scholar 

  12. Chan DA, Giaccia AJ . Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev. 2007; 26: 333–339.

    Article  CAS  Google Scholar 

  13. Rankin EB, Giaccia AJ . The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008; 15: 678–685.

    Article  CAS  Google Scholar 

  14. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284: 16767–16775.

    Article  CAS  Google Scholar 

  15. Dhar A, Ray A . The CCN family proteins in carcinogenesis. Exp Oncol 2010; 32: 2–9.

    CAS  PubMed  Google Scholar 

  16. Chu CY, Chang CC, Prakash E, Kuo ML . Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 2008; 15: 675–685.

    Article  CAS  Google Scholar 

  17. Hall-Glenn F, De Young RA, Huang BL, van Handel B, Hofmann JJ, Chen TT et al. CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 2012; 7: e30562.

    Article  CAS  Google Scholar 

  18. Hubble J, Demeter J, Jin H, Mao M, Nitzberg M, Reddy TB et al. Implementation of Genepattern within the Stanford Microarray Database. Nucleic Acids Res 2009; 37 (Database issue): D898–D901.

    Article  CAS  Google Scholar 

  19. Payne SL, Hendrix MJ, Kirschmann DA . Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem 2007; 101: 1338–1354.

    Article  CAS  Google Scholar 

  20. Zhang H, Akman HO, Smith EL, Zhao J, Murphy-Ullrich JE, Batuman OA . Cellular response to hypoxia involves signaling via Smad proteins. Blood 2003; 101: 2253–2260.

    Article  CAS  Google Scholar 

  21. Braig S, Wallner S, Junglas B, Fuchshofer R, Bosserhoff AK . CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration. Br J Cancer 2011; 105: 231–238.

    Article  CAS  Google Scholar 

  22. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 2008; 1: 13.

    Article  Google Scholar 

  23. Dornhofer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 2006; 66: 5816–5827.

    Article  Google Scholar 

  24. Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH . Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol 2004; 287: F1223–F1232.

    Article  CAS  Google Scholar 

  25. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T et al. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 2002; 23: 769–776.

    Article  CAS  Google Scholar 

  26. Norman JT, Clark IM, Garcia PL . Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 2000; 58: 2351–2366.

    Article  CAS  Google Scholar 

  27. Patel B, Khaliq A, Jarvis-Evans J, McLeod D, Mackness M, Boulton M . Oxygen regulation of TGF-beta 1 mRNA in human hepatoma (Hep G2) cells. Biochem Mol Biol Int 1994; 34: 639–644.

    CAS  PubMed  Google Scholar 

  28. Cicha I, Goppelt-Struebe M . Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors 2009; 35: 200–208.

    Article  CAS  Google Scholar 

  29. Samarin J, Wessel J, Cicha I, Kroening S, Warnecke C, Goppelt-Struebe M . FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells. J Biol Chem 2010; 285: 4328–4336.

    Article  CAS  Google Scholar 

  30. Perbal B . CCN proteins: multifunctional signalling regulators. Lancet 2004; 363: 62–64.

    Article  CAS  Google Scholar 

  31. Bork P . The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993; 327: 125–130.

    Article  CAS  Google Scholar 

  32. Chujo S, Shirasaki F, Kondo-Miyazaki M, Ikawa Y, Takehara K . Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J Cell Physiol 2009; 220: 189–195.

    Article  CAS  Google Scholar 

  33. Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K et al. Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 2004; 10: 2072–2081.

    Article  CAS  Google Scholar 

  34. Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D et al. Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 2002; 26: 420–427.

    Article  Google Scholar 

  35. Liu LY, Han YC, Wu SH, Lv ZH . Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer. World J Gastroenterol 2008; 14: 2110–2114.

    Article  Google Scholar 

  36. Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al. Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 2007; 109: 3080–3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K et al. Expression of connective tissue growth factor in cartilaginous tumors. Cancer 2000; 89: 1466–1473.

    Article  CAS  Google Scholar 

  38. Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY et al. Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2007; 2: e534.

    Article  Google Scholar 

  39. Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 2009; 69: 775–784.

    Article  CAS  Google Scholar 

  40. Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB . Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 2008; 118: 3660–3670.

    Article  CAS  Google Scholar 

  41. Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ . A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 2008; 14: 90–102.

    Article  CAS  Google Scholar 

  42. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ . Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009; 15: 527–538.

    Article  CAS  Google Scholar 

  43. Zhang B, Zhou KK, Ma JX . Inhibition of connective tissue growth factor overexpression in diabetic retinopathy by SERPINA3K via blocking the WNT/beta-catenin pathway. Diabetes 2010; 59: 1809–1816.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Giaccia Laboratory for their insightful discussions. We kindly thank Dr Boris C Bastian for discussions and review of our tissue array analysis methodology and Dr Adam J Krieg for his insights on the microarray analysis. We appreciate Kathy Brown's guiding hand with the low passage melanoma cell lines. This investigation was supported by NIH grants CA67166 and CA116685 (AJG), CA120526 (MBP), T32 CA121940 (ECF) and T32 CA09302 (TRW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M B Powell.

Ethics declarations

Competing interests

Elizabeth C Finger, Chieh-Fang Cheng, Erinn B Rankin, Tiffany R Williams, Barbara Bedogni, Amato J Giaccia and Marianne Broome Powell declare no conflict of interest. Dr Susanne Spong is an employee of FibroGen Inc., and provided the FG-3019 antibody for investigation to the laboratory of Dr Amato Giaccia. FibroGen did not provide any funds for these experiments nor were they involved in the plans, design or analysis of the data.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finger, E., Cheng, CF., Williams, T. et al. CTGF is a therapeutic target for metastatic melanoma. Oncogene 33, 1093–1100 (2014). https://doi.org/10.1038/onc.2013.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.47

Keywords

This article is cited by

Search

Quick links