Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor

Abstract

Approximately 50% of melanomas depend on mutant B-RAF for proliferation, metastasis and survival. The inhibition of oncogenic B-RAF with highly targeted compounds has produced remarkable albeit short-lived clinical responses in B-RAF mutant melanoma patients. Reactivation of signaling downstream of B-RAF is frequently associated with acquired resistance to B-RAF inhibitors, and the identification of B-RAF targets may provide new strategies for managing melanoma. Oncogenic B-RAFV600E is known to promote the stabilizing phosphorylation of the anti-apoptotic protein Mcl-1, implicated in melanoma survival and chemoresistance. We now show that B-RAFV600E signaling also induces the transcription of Mcl-1 in melanocytes and melanoma. We demonstrate that activation of STAT3 serine-727 and tyrosine-705 phosphorylations is promoted by B-RAFV600E activity and that the Mcl-1 promoter is dependent on a STAT consensus-site for B-RAF-mediated activation. Consequently, suppression of STAT3 activity disrupted B-RAFV600E-mediated induction of Mcl-1 and reduced melanoma cell survival. We propose that STAT3 has a central role in the survival and contributes to chemoresistance of B-RAFV600E melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cummins DL, Cummins JM, Pantle H, Silverman MA, Leonard AL, Chanmugam A . Cutaneous malignant melanoma. Mayo Clin Proc 2006; 81: 500–507.

    Article  PubMed  Google Scholar 

  2. Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the american joint committee on cancer melanoma staging system. J Clin Oncol 2001; 19: 3622–3634.

    Article  CAS  PubMed  Google Scholar 

  3. Ding Y, Prieto VG, Zhang PS, Rosenthal S, Smith KJ, Skelton HG et al. Nuclear expression of the antiapoptotic protein survivin in malignant melanoma. Cancer 2006; 106: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  4. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF et al. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol 2007; 20: 416–426.

    Article  CAS  PubMed  Google Scholar 

  5. Wong RP, Khosravi S, Martinka M, Li G . Myeloid leukemia-1 expression in benign and malignant melanocytic lesions. Oncol Rep 2008; 19: 933–937.

    PubMed  Google Scholar 

  6. Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al. Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 1998; 4: 1865–1871.

    CAS  PubMed  Google Scholar 

  7. Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P . Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res 2007; 13: 4934–4942.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang CC, Lai F, Tay KH, Croft A, Rizos H, Becker TM et al. Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS. Cell Death Dis 2010; 1: e69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Platz A, Egyhazi S, Ringborg U, Hansson J . Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 2008; 1: 395–405.

    Article  PubMed  Google Scholar 

  10. Wellbrock C, Hurlstone A . BRAF as therapeutic target in melanoma. Biochem Pharmacol 2010; 80: 561–567.

    Article  CAS  PubMed  Google Scholar 

  11. Shepherd C, Puzanov I, Sosman JA . B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep 2010; 12: 146–152.

    Article  CAS  PubMed  Google Scholar 

  12. Dhomen N, Marais R . BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am 2009; 23: 529–545, ix.

    Article  PubMed  Google Scholar 

  13. Boisvert-Adamo K, Longmate W, Abel EV, Aplin AE . Mcl-1 is required for melanoma cell resistance to anoikis. Mol Cancer Res 2009; 7: 549–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 2002; 21: 7001–7010.

    Article  CAS  PubMed  Google Scholar 

  15. Shao Y, Aplin AE . Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. Cancer Res 2010; 70: 6670–6681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curtis LM, Panka DJ, Cho CC, Mier JW, Sullivan RJ . The effects of raf kinase inhibition with either sorafenib or PLX-4720 on Mcl-1 expression and cytotoxicity alone and in combination with ABT-737 in melanoma cell lines. Mol Cancer Ther 2009; 8: B89.

    Article  Google Scholar 

  17. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann NY Acad Sci 2009; 1171: 59–76.

    Article  CAS  PubMed  Google Scholar 

  18. Kortylewski M, Jove R, Yu H . Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 2005; 24: 315–327.

    Article  CAS  PubMed  Google Scholar 

  19. Messina JL, Yu H, Riker AL, Munster PN, Jove RL, Daud AI . Activated stat-3 in melanoma. Cancer Control. 2008; 15: 196–201.

    Article  PubMed  Google Scholar 

  20. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth In vitro. J Clin Invest 1998; 102: 1385–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vignais ML, Sadowski HB, Watling D, Rogers NC, Gilman M . Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol Cell Biol 1996; 16: 1759–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levy DE, Darnell JE . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651–662.

    Article  CAS  PubMed  Google Scholar 

  23. Yu H, Jove R . The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 2004; 4: 97–105.

    Article  CAS  PubMed  Google Scholar 

  24. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer 2010; 9: 165.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becker TM, Philipsz S, Scurr LL, Fung C, Haferkamp S, Kefford RF et al. Oncogenic B-RAF(V600E) promotes anchorage-independent survival of human melanocytes. J Invest Dermatol 2010; 130: 2144–2147.

    Article  CAS  PubMed  Google Scholar 

  26. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Ma Y, Cole SM, Zander C, Chen KH, Karras J et al. Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 2003; 102: 344–352.

    Article  CAS  PubMed  Google Scholar 

  28. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007; 104: 7391–7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 1995; 269: 81–83.

    Article  CAS  PubMed  Google Scholar 

  30. Cirri P, Chiarugi P, Marra F, Raugei G, Camici G, Manao G et al. c-Src activates both STAT1 and STAT3 in PDGF-stimulated NIH3T3 cells. Biochem Biophys Res Commun 1997; 239: 493–497.

    Article  CAS  PubMed  Google Scholar 

  31. Buettner R, Mesa T, Vultur A, Lee F, Jove R . Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res 2008; 6: 1766–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC . Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 2006; 25: 4300–4309.

    Article  CAS  PubMed  Google Scholar 

  33. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 2010; 141: 717–727.

    Article  CAS  PubMed  Google Scholar 

  34. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y . The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 2006; 203: 1651–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chung J, Uchida E, Grammer TC, Blenis J . STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17: 6508–6516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venkatasubbarao K, Choudary A, Freeman JW . Farnesyl transferase inhibitor (R115777)-induced inhibition of STAT3(Tyr705) phosphorylation in human pancreatic cancer cell lines require extracellular signal-regulated kinases. Cancer Res 2005; 65: 2861–2871.

    Article  CAS  PubMed  Google Scholar 

  37. O'Connor TJ, Bjorge JD, Cheng HC, Wang JH, Fujita DJ . Mechanism of c-SRC activation in human melanocytes: elevated level of protein tyrosine phosphatase activity directed against the carboxy-terminal regulatory tyrosine. Cell Growth Differ 1995; 6: 123–130.

    CAS  PubMed  Google Scholar 

  38. Falchook G, Long GV, Kurzrock R, Kim KB, Arkenau HT, Brown MP et al. Dabrafenib in patients with melanoma, untreated brain metastases and other solid tumours: a phase 1 dose-escalation trial. Lancet 2012; 379: 1893–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 2006; 66: 3188–3196.

    Article  CAS  PubMed  Google Scholar 

  40. Long GV, Kefford RF, Carr P, Brown MP, Curtis M, Ma B et al. Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant (Mut) BRAF Kinase: evidence of activity in melanoma brain metastases (Mets). 35th European Society for Medical Oncology (ESMO). Milan, Oxford University Press, 2010.

    Google Scholar 

  41. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma R, Thompson JF et al. Selective BRAF inhibitors induce marked T cell infiltration into human metastatic melanoma. Clin Cancer Res 2011; 18: 1386–1394.

    Article  PubMed  Google Scholar 

  42. Jensen TO, Schmidt H, Moller HJ, Donskov F, Hoyer M, Sjoegren P et al. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 2011; 118: 2476–2485.

    Article  PubMed  Google Scholar 

  43. Alshamsan A, Hamdy S, Haddadi A, Samuel J, El-Kadi AO, Uludag H et al. STAT3 knockdown in B16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl Oncol 2011; 4: 178–188.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burdelya L, Kujawski M, Niu G, Zhong B, Wang T, Zhang S et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol 2005; 174: 3925–3931.

    Article  CAS  PubMed  Google Scholar 

  45. Akgul C . Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 2009; 66: 1326–1336.

    Article  CAS  PubMed  Google Scholar 

  46. Lin L, Amin R, Gallicano GI, Glasgow E, Jogunoori W, Jessup JM et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 2009; 28: 961–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK et al. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 2010; 9: 217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McMurray JS . A new small-molecule Stat3 inhibitor. Chem Biol 2006; 13: 1123–1124.

    Article  CAS  PubMed  Google Scholar 

  49. Fuh B, Sobo M, Cen L, Josiah D, Hutzen B, Cisek K et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer 2009; 100: 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Horiguchi A, Asano T, Kuroda K, Sato A, Asakuma J, Ito K et al. STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 2010; 102: 1592–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kong LY, Gelbard A, Wei J, Reina-Ortiz C, Wang Y, Yang EC et al. Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin Cancer Res 2010; 16: 2550–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hong DS, Kurzrock R, Supko JG, Lawrence DP, Wheler JJ, Meyer CJ et al. Phase I trial with a novel oral NF-{kappa}B/STAT3 inhibitor RTA 402 in patients with solid tumors and lymphoid malignancies. J Clin Oncol 2008; 26: abstract 3517.

  53. Paraiso K, Fang B, Han D, Fedorenko I, John J, Koomen J et al. A systems biology approach reveals increased activation of key drivers of tumor cell migration and invasion in vemurafenib resistant melanoma. Pigment Cell Melanoma Res 2012, p 878.

  54. Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H . Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 2009; 129: 1983–1991.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program Grant 633004 and project grants of the National Health and Medical Research Council of Australia (NHMRC), Translational Research Program Grant 10/TPG/1-02 of the Cancer Institute New South Wales and an infrastructure grant to Westmead Millennium Institute by the Health Department of NSW through Sydney West Area Health Service. Westmead Institute for Cancer Research is the recipient of capital grant funding from the Australian Cancer Research Foundation. HR is a recipient of a Cancer Institute New South Wales, Research Fellowship and a NHMRC Senior Research Fellowship. RAS is a recipient of a Cancer Institute New South Wales, Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Becker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, T., Boyd, S., Mijatov, B. et al. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene 33, 1158–1166 (2014). https://doi.org/10.1038/onc.2013.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.45

Keywords

This article is cited by

Search

Quick links