Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin

Abstract

Accumulating data have shown the involvement of microRNAs in cancerous processes as either oncogenes or tumor suppressor genes. Here, we established miR-30a as a tumor suppressor gene in breast cancer development and metastasis. Ectopic expression of miR-30a in breast cancer cell lines resulted in the suppression of cell growth and metastasis in vitro. Consistently, the xenograft mouse model also unveiled the suppressive effects of miR-30a on tumor growth and distal pulmonary metastasis. With dual luciferase reporter assay, we revealed that miR-30a could bind to the 3′-untranslated region of metadherin (MTDH) gene, thus exerting inhibitory effect on MTDH. Furthermore, we demonstrated that silence of MTDH could recapitulate the effects of miR-30a overexpression, while overexpression of MTDH could partially abrogate miR-30a-mediated suppression. Of significance, expression level of miR-30a was found to be significantly lower in primary breast cancer tissues than in the paired normal tissues. Further evaluation verified that miR-30a was negatively correlated with the extent of lymph node and lung metastasis in patients with breast cancer. Taken together, our findings indicated miR-30a inhibits breast cancer proliferation and metastasis by directly targeting MTDH, and miR-30a can serve as a prognostic marker for breast cancer. Manipulation of miR-30a may provide a promising therapeutic strategy for breast cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fidler IJ . The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  4. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics. CA 2010; 60: 277–300.

    PubMed  Google Scholar 

  5. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  6. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9: 293–302.

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V . MicroRNAs: tiny regulators with great potential. Cell 2001; 107: 823–826.

    Article  CAS  PubMed  Google Scholar 

  8. Schickel R, Boyerinas B, Park SM, Peter ME . MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27: 5959–5974.

    Article  CAS  PubMed  Google Scholar 

  9. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  10. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Wang J . MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 2012; 31: 2499–2511.

    Article  CAS  PubMed  Google Scholar 

  14. Agrawal R, Tran U, Wessely O . The miR-30 miRNA family regulates xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 2009; 136: 3927–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D . miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci USA 2011; 108: 522–527.

    Article  CAS  PubMed  Google Scholar 

  16. Xia Z, Zhang N, Jin H, Yu Z, Xu G, Huang Z . Clinical significance of astrocyte elevated gene-1 expression in human oligodendrogliomas. Clin Neurol Neurosurg 2010; 112: 413–419.

    Article  PubMed  Google Scholar 

  17. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009; 5: 816–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J Biol Chem 2012; 287: 4148–4156.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  20. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  21. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . Human MicroRNA targets. PLoS Biol 2004; 2: e363.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lagana A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R et al. miRo: a miRNA knowledge base. Database 2009; 2009: bap008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 2009; 15: 9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Almeida MI, Reis RM, Calin GA . MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717: 1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  27. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  28. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47: 897–907.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 2012; 134: 1081–1093.

    Article  CAS  PubMed  Google Scholar 

  30. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene (e-pub ahead of print 24 September 2012; doi: 10.1038/onc.2012.432).

    Article  PubMed  Google Scholar 

  31. Chappell SA, Walsh T, Walker RA, Shaw JA . Loss of heterozygosity at chromosome 6q in preinvasive and early invasive breast carcinomas. Br J Cancer 1997; 75: 1324–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noviello C, Courjal F, Theillet C . Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res 1996; 2: 1601–1606.

    CAS  PubMed  Google Scholar 

  33. Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F et al. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 2013; 14: 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 2011; 20: 104–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu F, Deng H, Yao H, Liu Q, Su F, Song E . Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29: 4194–4204.

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Gonzalez FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 2011; 127: 43–51.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY et al. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 2008; 14: 3319–3326.

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Li R, Song H, Wang D, Feng T, Yu X et al. Significance of aeg-1 expression in correlation with vegf, microvessel density and clinicopathological characteristics in triple-negative breast cancer. J Surg Oncol 2010; 103: 184–192.

    Article  PubMed  Google Scholar 

  39. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene 2007; 26: 7647–7655.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SG, Jeon HY, Su ZZ, Richards JE, Vozhilla N, Sarkar D et al. Astrocyte elevated gene-1 contributes to the pathogenesis of neuroblastoma. Oncogene 2009; 28: 2476–2484.

    Article  CAS  PubMed  Google Scholar 

  41. Yoo BK, Emdad L, Su ZZ, Villanueva A, Chiang DY, Mukhopadhyay ND et al. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J Clin Invest 2009; 119: 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu G, Wei Y, Kang Y . The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res 2009; 15: 5615–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2012; 32: 1173–1182.

    Article  PubMed  Google Scholar 

  44. Zhang N, Wang X, Huo Q, Li X, Wang H, Schneider P et al. The oncogene metadherin modulates the apoptotic pathway based on the tumor necrosis factor superfamily member TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) in breast cancer. J Biol Chem 2013; 288: 9396–9407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kong X, Moran MS, Zhao Y, Yang Q . Inhibition of metadherin sensitizes breast cancer cells to AZD6244. Cancer Biol Ther 2012; 13: 43–49.

    Article  CAS  PubMed  Google Scholar 

  46. Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L et al. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet 2011; 56: 595–601.

    Article  CAS  PubMed  Google Scholar 

  47. Hui ABY, Bruce JP, Alajez NM, Shi W, Yue S, Perez-Ordonez B et al. Significance of dysregulated metadherin and MicroRNA-375 in head and neck cancer. Clin Cancer Res 2011; 17: 7539–7550.

    Article  CAS  PubMed  Google Scholar 

  48. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2013; 32: 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  49. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  50. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 2012; 130: 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  51. Brown DM, Ruoslahti E . Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 2004; 5: 365–374.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang N, Kong X, Yan S, Yuan C, Yang Q . Huaier aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci 2010; 101: 2375–2383.

    Article  CAS  PubMed  Google Scholar 

  53. Heckman KL, Pease LR . Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protocols 2007; 2: 924–932.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shi Yan, Cunzhong Yuan and Ning Yang for collecting the clinical samples. This work was supported by National Natural Science Foundation of China (no. 30772133; no. 81072150; no. 81172529; no. 81272903) and Shandong Science and Technology Development Plan (no. 2012GZC22115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Wang, X., Huo, Q. et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 33, 3119–3128 (2014). https://doi.org/10.1038/onc.2013.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.286

Keywords

This article is cited by

Search

Quick links