Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chromatin effector Pygo2 regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice

Abstract

Little is known about chromatin mechanisms that regulate tumor-initiating cells that are proposed to be responsible for tumor recurrence and relapse. We have previously shown that Pygopus 2 (Pygo2), a chromatin effector and context-dependent Wnt signaling coactivator, regulates mammary gland development by expanding epithelial stem/progenitor cells. However, the role of Pygo2 in mammary tumorigenesis in vivo remains to be addressed. In this study, we show that epithelia-specific ablation of Pygo2 in MMTV-Wnt1 transgenic mice results in delayed mammary ductal elongation, but the hyperbranching phenotype, aberrant accumulation of stem/progenitor-like cells, and canonical Wnt signaling output are largely unaffected. Chronic loss of Pygo2 significantly delays mammary tumor onset in MMTV-Wnt1 females, whereas acute deletion of Pygo2 in MMTV-Wnt1 tumor cells leads to a significant decrease in their tumor-initiating capability upon transplantation. Finally, we provide evidence supporting a role for Pygo2 in modulating the lineage potential of MMTV-Wnt1 tumor initiating cells. Collectively, our results suggest that Pygo2 acts at a step downstream of mammary stem cell accumulation to facilitate transformation, and that it regulates the tumor initiating capacity and lineage preference of the already transformed mammary cells, in MMTV-Wnt1 mice. These findings offer valuable insights into our understanding of the molecular basis of heterogeneity within breast tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

FACS:

Fluorescence-activated cell sorting

GSEA:

Gene set enrichment analysis

MaSC:

Mammary stem cell

MG:

Mammary gland

MMTV:

Mouse mammary tumor virus

Pygo2:

Pygopus 2

SSKO:

Skin/mammary epithelia-specific knockout.

References

  1. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    CAS  PubMed  Google Scholar 

  2. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    CAS  PubMed  Google Scholar 

  3. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  4. Gu B, Watanabe K, Dai X . Epithelial stem cells: an epigenetic and Wnt-centric perspective. J Cell Biochem 2010; 110: 1279–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raaphorst FM . Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol 2003; 24: 522–524.

    Article  CAS  PubMed  Google Scholar 

  7. Jagani Z, Dorsch M, Warmuth M . Hedgehog pathway activation in chronic myeloid leukemia. Cell cycle 2010; 9: 3449–3456.

    Article  CAS  PubMed  Google Scholar 

  8. Khalil S, Tan GA, Giri DD, Zhou XK, Howe LR . Activation status of Wnt/ss-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse. PloS ONE 2012; 7: e33421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tepera SB, McCrea PD, Rosen JM . A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 2003; 116 (Pt 6): 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  10. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002; 109: 47–60.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M . A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 2002; 4: 367–373.

    Article  CAS  PubMed  Google Scholar 

  12. Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J et al. pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development 2002; 129: 4089–4101.

    CAS  PubMed  Google Scholar 

  13. Parker DS, Jemison J, Cadigan KM . Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development (Cambridge, England) 2002; 129: 2565–2576.

    CAS  Google Scholar 

  14. Fiedler M, Sanchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Müller J et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell 2008; 30: 507–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 2009; 185: 811–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Luo Q, Yuan Y, Huang X, Cai W, Li C et al. Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol 2010; 30: 5621–5635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews PG, He Z, Popadiuk C, Kao KR . The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422: 493–501.

    Article  CAS  PubMed  Google Scholar 

  18. Gu B, Watanabe K, Dai X . Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell cycle 2011; 11: 79–87.

    Article  Google Scholar 

  19. Andrews PG, Lake BB, Popadiuk C, Kao KR . Requirement of Pygopus 2 in breast cancer. Int J Oncol 2007; 30: 357–363.

    CAS  PubMed  Google Scholar 

  20. Li Y, Hively WP, Varmus HE . Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000; 19: 1002–1009.

    Article  CAS  PubMed  Google Scholar 

  21. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  22. Munn RJ, Webster M, Muller WJ, Cardiff RD . Histopathology of transgenic mouse mammary tumors (a short atlas). Sem Cancer Biol 1995; 6: 153–158.

    Article  CAS  Google Scholar 

  23. Lindeman GJ, Visvader JE . Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia-Pac J Clin Oncol 2010; 6: 89–97.

    Article  PubMed  Google Scholar 

  24. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Nat Acad Sci Usa 2003; 100: 15853–15858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu BY, McDermott SP, Khwaja SS, Alexander CM . The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101: 4158–4163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker R, Kent CV, Silbermann RA, Hassell JA, Young LJ, Howe LR . Pea3 transcription factors and wnt1-induced mouse mammary neoplasia. PloS ONE 2010; 5: e8854.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P . MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PloS ONE 2009; 4: e4537.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004; 15: 2523–2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  31. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer cell 2006; 10: 437–449.

    Article  CAS  PubMed  Google Scholar 

  32. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  33. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625.

    Article  CAS  PubMed  Google Scholar 

  34. Smith GH, Mehrel T, Roop DR . Differential keratin gene expression in developing, differentiating, preneoplastic, and neoplastic mouse mammary epithelium. Cell Growth Differ 1990; 1: 161–170.

    CAS  PubMed  Google Scholar 

  35. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  36. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002; 22: 1184–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim S, Goel S, Alexander CM . Differentiation generates paracrine cell pairs that maintain basaloid mouse mammary tumors: proof of concept. PloS ONE 2011; 6: e19310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol 2011; 6: 829–836.

    Article  Google Scholar 

  39. Gjorevski N, Nelson CM . Integrated morphodynamic signalling of the mammary gland. Nature reviews 2011; 12: 581–593.

    Article  CAS  PubMed  Google Scholar 

  40. Bocchinfuso WP, Hively WP, Couse JF, Varmus HE, Korach KS . A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res 1999; 59: 1869–1876.

    CAS  PubMed  Google Scholar 

  41. Song N, Schwab KR, Patterson LT, Yamaguchi T, Lin X, Potter SS et al. pygopus 2 has a crucial, Wnt pathway-independent function in lens induction. Development 2007; 134: 1873–1885.

    Article  CAS  PubMed  Google Scholar 

  42. Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X et al. Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 2007; 5: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    Article  CAS  PubMed  Google Scholar 

  44. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–644.

    Article  CAS  PubMed  Google Scholar 

  46. Li B, Rheaume C, Teng A, Bilanchone V, Munguia JE, Hu M et al. Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis 2007; 45: 318–325.

    Article  CAS  PubMed  Google Scholar 

  47. Sun P, Yuan Y, Li A, Li B, Dai X . Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol 2010; 133: 213–221.

    Article  CAS  PubMed  Google Scholar 

  48. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008; 453: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F et al. CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem cells (Dayton, Ohio) 2010; 28: 535–544.

    CAS  Google Scholar 

  51. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

  52. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  53. Karantza-Wadsworth V, White E . A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression. Methods Enzymol 2008; 446: 61–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eustice DC, Feldman PA, Colberg-Poley AM, Buckery RM, Neubauer RH . A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. Biotechniques 1991; 11: 739–740, 742–743.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the UCI Genomics High Throughput Facility and Sue and Bill Gross Stem Cell Research Center Core Facility (Vanessa Scarfone) for expert service, Yi Li and Julie Serge for the generous gifts of MMTV-Wnt1 mice and keratin antibodies, respectively, and Eva Lee for discussions. This work was supported by Susan G Komen grant KG110897 and NIH Grant R01-GM083089 (to XD). KW was supported by a U.S. Department of Defense Breast Cancer Research Program. (DOD BCRP) Postdoctoral Fellowship (W81XWH-10-1-0383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Dai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Fallahi, M. & Dai, X. Chromatin effector Pygo2 regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. Oncogene 33, 632–642 (2014). https://doi.org/10.1038/onc.2012.620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.620

Keywords

This article is cited by

Search

Quick links