Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia

Abstract

Glucocorticoids (GCs) are among the most widely prescribed medications in clinical practice. The beneficial effects of GCs in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis, but the underlying transcriptional mechanisms remain poorly defined. Computational modeling has enormous potential in the understanding of biological processes such as apoptosis and the discovery of novel regulatory mechanisms. We here present an integrated analysis of gene expression kinetic profiles using microarrays from GC sensitive and resistant ALL cell lines and patients, including newly generated and previously published data sets available from the Gene Expression Omnibus. By applying time-series clustering analysis in the sensitive ALL CEM-C7–14 cells, we identified 358 differentially regulated genes that we classified into 15 kinetic profiles. We identified GC response element (GRE) sequences in 33 of the upregulated known or potential GC receptor (GR) targets. Comparative study of sensitive and resistant ALL showed distinct gene expression patterns and indicated unexpected similarities between sensitivity-restored and resistant ALL. We found that activator protein 1 (AP-1), Ets related gene (Erg) and GR pathways were differentially regulated in sensitive and resistant ALL. Erg protein levels were substantially higher in CEM-C1–15-resistant cells, c-Jun was significantly induced in sensitive cells, whereas c-Fos was expressed at low levels in both. c-Jun was recruited on the AP-1 site on the Bim promoter, whereas a transient Erg occupancy on the GR promoter was detected. Inhibition of Erg and activation of GR lead to increased apoptosis in both sensitive and resistant ALL. These novel findings significantly advance our understanding of GC sensitivity and can be used to improve therapy of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Abbreviations

GC:

glucocorticoid

GR:

glucocorticoid receptor

GRE:

glucocorticoid response element

Bcl-2:

B-cell lymphoma 2

Dex:

dexamethasone

Erg:

Ets related gene

p-Jun:

phospho-c-Jun

AP-1:

activator protein 1.

References

  1. Wen LP, Madani K, Fahrni JA, Duncan SR, Rosen GD . Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-γ and Fas. Am J Physiol Lung Cell Mol Physiol 1997; 273: L921–L929.

    Article  CAS  Google Scholar 

  2. Yamamoto KR . Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet 1985; 19: 209–252.

    Article  CAS  Google Scholar 

  3. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW . Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 2003; 278: 23861–23867.

    Article  CAS  Google Scholar 

  4. Chen DWC, Lynch JT, Demonacos C, Krstic-Demonacos M, Schwartz J-M . Quantitative analysis and modeling of glucocorticoid-controlled gene expression. Pharmacogenomics 2010; 11: 1545–1560.

    Article  CAS  Google Scholar 

  5. Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S et al. The Bcl2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 2007; 22: 370–377.

    Article  Google Scholar 

  6. Miller A, Komak S, Webb SM, Leiter E, Thompson EB . Gene expression profiling of leukemic cells and primary thymocytes predicts a signature for apoptotic sensitivity to glucocorticoids. Cancer Cell Int 2007; 7: 18.

    Article  Google Scholar 

  7. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB . BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001; 15: 1481–1486.

    Article  CAS  Google Scholar 

  8. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L et al. BH3-only proteins puma and Bim are rate-limiting for gamma-radiation– and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005; 106: 4131–4138.

    Article  CAS  Google Scholar 

  9. So AYL, Chaivorapol C, Bolton EC, Li H, Yamamoto KR . Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet 2007; 3: e94.

    Article  Google Scholar 

  10. Helmberg A, Auphan N, Caelles C, Karin M . Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J 1995; 14: 452–460.

    Article  CAS  Google Scholar 

  11. Wallace AD, Cidlowski JA . Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 2001; 276: 42714–42721.

    Article  CAS  Google Scholar 

  12. Geng CD, Vedeckis WV . c-Myb and members of the c-Ets family of transcription factors act as molecular switches to mediate opposite steroid regulation of the human glucocorticoid receptor 1a promoter. J Biol Chem 2005; 280: 43264–43271.

    Article  CAS  Google Scholar 

  13. White RJ, Sharrocks AD . Coordinated control of the gene expression machinery. Trends Genet 26: 214–220.

    Article  CAS  Google Scholar 

  14. Davies L, Karthikeyan N, Lynch JT, Sial E-A, Gkourtsa A, Demonacos C et al. Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function. Mol Endocrinol 2008; 22: 1331–1344.

    Article  CAS  Google Scholar 

  15. Krstic MD, Rogatsky I, Yamamoto KR, Garabedian MJ . Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 1997; 17: 3947–3954.

    Article  CAS  Google Scholar 

  16. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR . Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 1990; 249: 1266–1272.

    Article  CAS  Google Scholar 

  17. De Bosscher K, Vanden Berghe W, Haegeman G . The interplay between the glucocorticoid receptor and nuclear factor-κb or activator protein-1: molecular mechanisms for gene repression. Endocrine Rev 2003; 24: 488–522.

    Article  CAS  Google Scholar 

  18. Segal E, Friedman N, Kaminski N, Regev A, Koller D . From signatures to models: understanding cancer using microarrays. Nat Genet. 2005; 37 (Suppl): S38–S45.

    Article  CAS  Google Scholar 

  19. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  Google Scholar 

  20. Segal E, Friedman N, Koller D, Regev A . A module map showing conditional activity of expression modules in cancer. Nat Genet 2004; 36: 1090–1098.

    Article  CAS  Google Scholar 

  21. Jin JY, Almon RR, DuBois DC, Jusko WJ . Modeling of corticosteroid pharmacogenomics in rat liver using gene microarrays. J Pharmacol Exp Ther 2003; 307: 93–109.

    Article  CAS  Google Scholar 

  22. Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, NCS Program, Liechty KW et al. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. PNAS 2010; 107: 14799–14804.

    Article  CAS  Google Scholar 

  23. Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 2002; 16: 61–71.

    Article  CAS  Google Scholar 

  24. Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmüller C et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2006; 107: 2061–2069.

    Article  CAS  Google Scholar 

  25. Tsuzuki S, Taguchi O, Seto M . Promotion and maintenance of leukemia by erg. Blood 2011; 10: 1182.

    Google Scholar 

  26. Thoms JAI, Birger Y, Foster S, Knezevic K, Kirschenbaum Y, Chandrakanthan V et al. Erg promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 2011; 117: 7079–7089.

    Article  CAS  Google Scholar 

  27. Martens J . Acute myeloid leukemia: A central role for the Ets factor Erg. Int J Biochem Cell Biol 2011; 43: 1413–1416.

    Article  CAS  Google Scholar 

  28. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L et al. A small molecule blocking oncogenic protein Ews-Fli1 interaction with rna helicase a inhibits growth of ewing's sarcoma. Nat Med 2009; 15: 750–756.

    Article  CAS  Google Scholar 

  29. Rahim S, Beauchamp EM, Kong Y, Brown ML, Toretsky JA, Üren A . YK-4-279 inhibits Erg and Etv1 mediated prostate cancer cell invasion. PLoS One 2011; 6: e19343.

    Article  CAS  Google Scholar 

  30. Ernst J, Bar-Joseph Z . Stem: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006; 7: 191.

    Article  Google Scholar 

  31. Zhou F, Thompson EB . Role of c-Jun induction in the glucocorticoid-evoked apoptotic pathway in human leukemic lymphoblasts. Mol Endocrinol 1996; 10: 306–316.

    CAS  PubMed  Google Scholar 

  32. Biswas SC, Shi Y, Sproul A, Greene LA . Pro-apoptotic Bim induction in response to nerve growth factor deprivation requires simultaneous activation of three different death signaling pathways. J Biol Chem 2007; 282: 29368–29374.

    Article  CAS  Google Scholar 

  33. Zhao F, Xuan Z, Liu L, Zhang MQ . TRED: A transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Res 2005; 33: D103–D107.

    Article  CAS  Google Scholar 

  34. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of affymetrix genechip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  Google Scholar 

  35. Jaiswal AK . Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004; 36: 1199–1207.

    Article  CAS  Google Scholar 

  36. Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TOB et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK medical research council ALL97 randomized trial. Br J Haematol 2005; 129: 734–745.

    Article  CAS  Google Scholar 

  37. Verger A, Buisine E, Carrère S, Wintjens R, Flourens A, Coll J et al. Identification of amino acid residues in the Ets transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation. J Biol Chem 2001; 276: 17181–17189.

    Article  CAS  Google Scholar 

  38. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006; 38: 1289–1297.

    Article  CAS  Google Scholar 

  39. Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S, Cher ML et al. Androgens induce functional Cxcr4 through Erg factor expression in Tmprss2-Erg fusion-positive prostate cancer cells. Transl Oncol 2010; 3: 195–203.

    Article  Google Scholar 

  40. Bruna A, Nicolas M, Munoz A, Kyriakis JM, Caelles C . Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids. EMBO J 2003; 22: 6035–6044.

    Article  CAS  Google Scholar 

  41. Caelles C, González-Sancho JM, Muñoz A . Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev 1997; 11: 3351–3364.

    Article  CAS  Google Scholar 

  42. Miner JN, Yamamoto KR . The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev 1992; 6: 2491–2501.

    Article  CAS  Google Scholar 

  43. Pearce D, Matsui W, Miner JN, Yamamoto KR . Glucocorticoid receptor transcriptional activity determined by spacing of receptor and nonreceptor DNA sites. J Biol Chem 1998; 273: 30081–30085.

    Article  CAS  Google Scholar 

  44. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2001; 43: 145–155.

    Article  Google Scholar 

  45. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, Graves BJ . Oncogenic Ets proteins mimic activated Ras/MAPK signaling in prostate cells. Genes Dev 2011; 25: 2147–2157.

    Article  CAS  Google Scholar 

  46. Mittelstadt PR, Ashwell JD . Inhibition of AP-1 by the glucocorticoid-inducible protein Gilz. J Biol Chem 2001; 276: 29603–29610.

    Article  CAS  Google Scholar 

  47. Shaulian E, Karin M . AP-1as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  Google Scholar 

  48. Leung KT, Li KKH, Sun SSM, Chan PKS, Ooi VEC, Chiu LCM . Activation of the JNK pathway promotes phosphorylation and degradation of BIMEL--a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 2008; 29: 544–551.

    Article  CAS  Google Scholar 

  49. Barrett TJ, Vig E, Vedeckis WV . Coordinate regulation of glucocorticoid receptor and c-Jun gene expression is cell type-specific and exhibits differential hormonal sensitivity for down- and up-regulation. Biochemistry 1996; 35: 9746–9753.

    Article  CAS  Google Scholar 

  50. Kettritz R, Choi M, Rolle S, Wellner M, Luft FC . Integrins and cytokines activate nuclear transcription factor-κb in human neutrophils. J Biol Chem 2004; 279: 2657–2665.

    Article  CAS  Google Scholar 

  51. Qi X, Pramanik R, Wang J, Schultz RM, Maitra RK, Han J et al. The p38 and JNK pathways cooperate to trans-activate vitamin d receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D3-induced growth inhibition. J Biol Chem 2002; 277: 25884–25892.

    Article  CAS  Google Scholar 

  52. Hibi M, Lin A, Smeal T, Minden A, Karin M . Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 1993; 7: 2135–2148.

    Article  CAS  Google Scholar 

  53. Li L, Feng Z, Porter AG . JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells. J Biol Chem 2004; 279: 4058–4065.

    Article  CAS  Google Scholar 

  54. Seth A, Watson DK . Ets transcription factors and their emerging roles in human cancer. Eur J Cancer 2005; 41: 2462–2478.

    Article  CAS  Google Scholar 

  55. Baldus CD, Burmeister T, Martus P, Schwartz S, Gökbuget N, Bloomfield CD et al. High expression of the Ets transcription factor Erg predicts adverse outcome in acute T-lymphoblastic leukemia in adults. JCO 2006; 24: 4714–4720.

    Article  CAS  Google Scholar 

  56. Baldus CD, Martus P, Burmeister T, Schwartz S, Gökbuget N, Bloomfield CD et al. Low Erg and Baalc expression identifies a new subgroup of adult acute T-lymphoblastic leukemia with a highly favorable outcome. JCO 2007; 25: 3739–3745.

    Article  CAS  Google Scholar 

  57. Basuyaux JP, Ferreira E, Stéhelin D, Buttice G . The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J Biol Chem 1997; 272: 26188–26195.

    Article  CAS  Google Scholar 

  58. Birdsey GM, Dryden NH, Amsellem V, Gebhardt F, Sahnan K, Haskard DO et al. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 2008; 111: 3498–3506.

    Article  CAS  Google Scholar 

  59. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B et al. Tmprss2-Erg fusion, a common genomic alteration in prostate cancer activates c-Myc and abrogates prostate epithelial differentiation. Oncogene 2008; 27: 5348–5353.

    Article  CAS  Google Scholar 

  60. Medh RD, Wang A, Zhou F, Thompson EB . Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells. Oncogene 2001; 20: 4269–4639.

    Article  Google Scholar 

  61. Löffler M, Ausserlechner MJ, Tonko M, Hartmann BL, Bernhard D, Geley S et al. c-Myc does not prevent glucocorticoid-induced apoptosis of human leukemic lymphoblasts. Oncogene 1999; 18: 4646–4631.

    Article  Google Scholar 

  62. Yi HK, Fujimura Y, Ouchida M, Prasad DDK, Rao VN, Reddy ESP . Inhibition of apoptosis by normal and aberrant Fli-1 and Erg proteins involved in human solid tumors and leukemias. Oncogene 1997; 14: 1259–1268.

    Article  CAS  Google Scholar 

  63. Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O et al. The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-XL-dependent mechanism. Mol Cell Biol 1999; 19: 2624–2634.

    Article  CAS  Google Scholar 

  64. Medh RD, Saeed MF, Johnson BH, Thompson EB . Resistance of human leukemic CEM-C1 cells is overcome by synergism between glucocorticoid and protein kinase A pathways: Correlation with c-Myc suppression. Cancer Res 1998; 58: 3684–3693.

    CAS  PubMed  Google Scholar 

  65. Li C, Wong W . Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  66. Bolstad B, Irizarry R, Astrand M, Speed T . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  Google Scholar 

  67. Smyth G . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3; article 3.

    Article  Google Scholar 

  68. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003; 34: 374–378.

    Article  CAS  Google Scholar 

  69. Ernst J, Nau GJ, Bar-Joseph Z . Clustering short time series gene expression data. Bioinformatics 2005; 21: i159–i168.

    Article  CAS  Google Scholar 

  70. Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M et al. Pcaf is an Hif-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 2008; 27: 5785–5796.

    Article  CAS  Google Scholar 

  71. Lynch J, Rajendran R, Xenaki G, Berrou I, Demonacos C, Krstic-Demonacos M . The role of glucocorticoid receptor phosphorylation in Mcl-1 and Noxa gene expression. Mol Cancer 2010; 9: 38.

    Article  Google Scholar 

  72. Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT . Chip-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 2009; 48: 240–248.

    Article  CAS  Google Scholar 

  73. Al-Shahrour F, Díaz-Uriarte R, Dopazo J . Fatigo: A web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics 2004; 20: 578–580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Sharrocks and Dr Demonacos for helpful comments and criticisms, Dr Tournier for reagents and the Faculty of Life Sciences Core Facility of the University of Manchester for help with microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-M Schwartz or M Krstic-Demonacos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, DC., Saha, V., Liu, JZ. et al. Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia. Oncogene 32, 3039–3048 (2013). https://doi.org/10.1038/onc.2012.321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.321

Keywords

This article is cited by

Search

Quick links