Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability

Abstract

Secretory clusterin (sCLU) is a stress-induced, pro-survival glycoprotein elevated in early-stage cancers, in particular in APC/Min-defective colon cancers. sCLU is upregulated after exposure to various cytotoxic agents, including ionizing radiation (IR), leading to a survival advantage. We found that stimulation of insulin-like growth factor-1 (IGF-1) and IGF-1R protein kinase signaling was required for sCLU induction after IR exposure. Here, we show that activation of Ataxia telangiectasia-mutated kinase (ATM) by endogenous or exogenous forms of DNA damage was required to relieve basal repression of IGF-1 transcription by the p53/NF-YA complex, leading to sCLU expression. Although p53 levels were stabilized and elevated after DNA damage, dissociation of NF-YA, and thereby p53, from the IGF-1 promoter resulted in IGF-1 induction, indicating that NF-YA was rate limiting. Cells with elevated endogenous DNA damage (deficient in H2AX, MDC1, NBS1, mTR or hMLH1) or cells exposed to DNA-damaging agents had elevated IGF-1 expression, resulting in activation of IGF-1R signaling and sCLU induction. In contrast, ATM-deficient cells were unable to induce sCLU after DNA damage. Our results integrate DNA damage resulting from genetic instability, IR, or chemotherapeutic agents, to ATM activation and abrogation of p53/NF-YA-mediated IGF-1 transcriptional repression, that induces IGF-1–sCLU expression. Elucidation of this pathway should uncover new mechanisms for cancer progression and reveal new targets for drug development to overcome resistance to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67: 8662–8670.

    Article  CAS  Google Scholar 

  • Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L et al. (1997). CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic Acids Res 25: 2174–2181.

    Article  CAS  Google Scholar 

  • Bentle MS, Reinicke KE, Bey EA, Spitz DR, Boothman DA . (2006). Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. J Biol Chem 281: 33684–33696.

    Article  CAS  Google Scholar 

  • Bocchetta M, Eliasz S, De Marco MA, Rudzinski J, Zhang L, Carbone M . (2008). The SV40 large T antigen-p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth. Cancer Res 68: 1022–1029.

    Article  CAS  Google Scholar 

  • Boggs LN, Fuson KS, Baez M, Churgay L, McClure D, Becker G et al. (1996). Clusterin (Apo J) protects against in vitro amyloid-beta (1-40) neurotoxicity. J Neurochem 67: 1324–1327.

    Article  CAS  Google Scholar 

  • Boothman DA, Meyers M, Fukunaga N, Lee SW . (1993). Isolation of x-ray-inducible transcripts from radioresistant human melanoma cells. Proc Natl Acad Sci USA 90: 7200–7204.

    Article  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA et al. (2002). Genomic instability in mice lacking histone H2AX. Science 296: 922–927.

    Article  CAS  Google Scholar 

  • Chen X, Halberg RB, Ehrhardt WM, Torrealba J, Dove WF . (2003). Clusterin as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci USA 100: 9530–9535.

    Article  CAS  Google Scholar 

  • Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I et al. (2010). Randomized phase II study of Docetaxel and Prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28: 4247–4254.

    Article  CAS  Google Scholar 

  • Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD et al. (2005). Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280: 14212–14221.

    Article  CAS  Google Scholar 

  • Criswell T, Klokov D, Beman M, Lavik JP, Boothman DA . (2003). Repression of IR-inducible clusterin expression by the p53 tumor suppressor protein. Cancer Biol Ther 2: 372–380.

    Article  CAS  Google Scholar 

  • D'Arpa P, Beardmore C, Liu LF . (1990). Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50: 6919–6924.

    CAS  PubMed  Google Scholar 

  • de Silva HV, Harmony JA, Stuart WD, Gil CM, Robbins J . (1990). Apolipoprotein J: structure and tissue distribution. Biochemistry 29: 5380–5389.

    Article  CAS  Google Scholar 

  • Dumaz N, Meek DW . (1999). Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18: 7002–7010.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Hao LY, Greider CW . (2004). Genomic instability in both wild-type and telomerase null MEFs. Chromosoma 113: 62–68.

    Article  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  Google Scholar 

  • Jin G, Howe PH . (1997). Regulation of clusterin gene expression by transforming growth factor beta. J Biol Chem 272: 26620–26626.

    Article  CAS  Google Scholar 

  • Jones SE, Jomary C . (2002). Clusterin. Int J Biochem Cell Biol 34: 427–431.

    Article  CAS  Google Scholar 

  • Klokov D, Criswell T, Leskov KS, Araki S, Mayo L, Boothman DA . (2004). IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutat Res 568: 97–110.

    Article  CAS  Google Scholar 

  • Kojis TL, Gatti RA, Sparkes RS . (1991). The cytogenetics of ataxia telangiectasia. Cancer Genet Cytogenet 56: 143–156.

    Article  CAS  Google Scholar 

  • Leri A, Liu Y, Claudio PP, Kajstura J, Wang X, Wang S et al. (1999). Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol 154: 567–580.

    Article  CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.

    Article  CAS  Google Scholar 

  • Macaulay VM, Salisbury AJ, Bohula EA, Playford MP, Smorodinsky NI, Shiloh Y . (2001). Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene 20: 4029–4040.

    Article  CAS  Google Scholar 

  • Mantovani R, Li XY, Pessara U, Hooft van Huisjduijnen R, Benoist C, Mathis D . (1994). Dominant negative analogs of NF-YA. J Biol Chem 269: 20340–20346.

    CAS  PubMed  Google Scholar 

  • Matsui T, Katsuno Y, Inoue T, Fujita F, Joh T, Niida H et al. (2004). Negative regulation of Chk2 expression by p53 is dependent on the CCAAT-binding transcription factor NF-Y. J Biol Chem 279: 25093–25100.

    Article  CAS  Google Scholar 

  • Mayo LD, Donner DB . (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603.

    Article  CAS  Google Scholar 

  • Mittanck DW, Kim SW, Rotwein P . (1997). Essential promoter elements are located within the 5′ untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 126: 153–163.

    Article  CAS  Google Scholar 

  • Miyake H, Nelson C, Rennie PS, Gleave ME . (2000). Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res 60: 2547–2554.

    CAS  PubMed  Google Scholar 

  • Peng Y, Stewart D, Li W, Hawkins M, Kulak S, Ballermann B et al. (2007). Irradiation modulates association of NF-Y with histone-modifying cofactors PCAF and HDAC. Oncogene 26: 7576–7583.

    Article  CAS  Google Scholar 

  • Perry ME, Piette J, Zawadzki JA, Harvey D, Levine AJ . (1993). The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc Natl Acad Sci USA 90: 11623–11627.

    Article  CAS  Google Scholar 

  • Ryan PD, Goss PE . (2008). The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist 13: 16–24.

    Article  CAS  Google Scholar 

  • Shahrabani-Gargir L, Pandita TK, Werner H . (2004). Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145: 5679–5687.

    Article  CAS  Google Scholar 

  • So A, Sinnemann S, Huntsman D, Fazli L, Gleave M . (2005). Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther 4: 1837–1849.

    Article  CAS  Google Scholar 

  • Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P et al. (2006). ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25: 5775–5782.

    Article  CAS  Google Scholar 

  • Sulkowski S, Wincewicz A, Zalewski B, Famulski W, Lotowska JM, Koda M et al. (2009). Hypoxia related growth factors and p53 in preoperative sera from patients with colorectal cancer--evaluation of the prognostic significance of these agents. Clin Chem Lab Med 47: 1439–1445.

    Article  CAS  Google Scholar 

  • Wagner MW, Li LS, Morales JC, Galindo CL, Garner HR, Bornmann WG et al. (2008). Role of c-Abl kinase in DNA mismatch repair-dependent G2 cell cycle checkpoint arrest responses. J Biol Chem 283: 21382–21393.

    Article  CAS  Google Scholar 

  • Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W et al. (2000). Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci USA 97: 13549–13554.

    Article  CAS  Google Scholar 

  • Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH . (2002). A murine model of Nijmegen breakage syndrome. Curr Biol 12: 648–653.

    Article  CAS  Google Scholar 

  • Wilson MR, Easterbrook-Smith SB . (2000). Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25: 95–98.

    Article  CAS  Google Scholar 

  • Yan J, Yu CT, Ozen M, Ittmann M, Tsai SY, Tsai MJ . (2006). Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res 66: 11039–11046.

    Article  CAS  Google Scholar 

  • Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH et al. (1999). p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 274: 29677–29682.

    Article  CAS  Google Scholar 

  • Yun J, Chae HD, Choi TS, Kim EH, Bang YJ, Chung J et al. (2003). Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway. J Biol Chem 278: 36966–36972.

    Article  CAS  Google Scholar 

  • Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY . (2005). Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7: 909–915.

    Article  CAS  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    Article  CAS  Google Scholar 

  • Ziv Y, Bar-Shira A, Pecker I, Russell P, Jorgensen TJ, Tsarfati I et al. (1997). Recombinant ATM protein complements the cellular A-T phenotype. Oncogene 15: 159–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DOE grant (#DE-FG02-06ER64186-17) to DAB, a DOD BCRP pre-doctoral fellowship (W81XWH-06-0748) to EMG and a DOD PCRP post-doctoral fellowship (X8IXWH-09-1-0168) to XL. We are grateful to the Robert B and Virginia Payne Endowment for support of this work. We also thank the support received from the SAIR NIH U24 grant CA126608 and the Imaging Shared Resource of the Simmons Cancer Center. This is CSCN #024 and used the Flow Cytometry and Biostatistics cores of the Simmons Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Boothman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goetz, E., Shankar, B., Zou, Y. et al. ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability. Oncogene 30, 3745–3754 (2011). https://doi.org/10.1038/onc.2011.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.92

Keywords

This article is cited by

Search

Quick links