Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-663, a microRNA targeting p21WAF1/CIP1, promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma

Abstract

MicroRNAs (miRNAs) may function as either oncogenes or tumor suppressors in the malignant progression of different tumor types. MiR-663 was recently reported to be decreased and identified as a tumor suppressor in gastric cancer. We also verified its role in repressing cell proliferation of a gastric cancer cell line. In this study, however, miR-663 was found to be upregulated in nasopharyngeal carcinoma (NPC) cells compared with human immortalized nasopharyngeal epithelium cells, using a miRNA microarray, and this higher expression was confirmed in NPC tissue samples. Indeed, inhibition of miR-663 impaired the proliferation of NPC cells in vitro and the NPC tumor growth of xenografts in nude mice. Mechanistically, miR-663 directly targeted p21WAF1/CIP1 to promote the cellular G1/S transition, as the inhibitory effects of miR-663 on the G1/S transition could be rescued by p21WAF1/CIP1 silencing. Our results imply that miR-663 may act as an oncogene in NPC. The newly identified miR-663/p21WAF1/CIP1 axis clarifies the molecular mechanism of NPC cell proliferation and represents a novel strategy for the diagnosis and treatment of patients with NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J et al. (2011). miR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 71: 2381–2391.

    Article  CAS  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ et al. (2010). A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42: 599–603.

    Article  CAS  Google Scholar 

  • Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG et al. (2010). Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29: 2262–2271.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chen H, Qian K, Tang ZP, Xing B, Chen H, Liu N et al. (2010). Bioinformatics and microarray analysis of microRNA expression profiles of murine embryonic stem cells, neural stem cells induced from ESCs and isolated from E8.5 mouse neural tube. Neurol Res 32: 603–613.

    Article  CAS  Google Scholar 

  • Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP et al. (2009). MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 100: 1002–1011.

    Article  CAS  Google Scholar 

  • Child ES, Mann DJ . (2006). The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5: 1313–1319.

    Article  CAS  Google Scholar 

  • Chou J, Lin YC, Kim J, You L, Xu Z, He B et al. (2008). Nasopharyngeal carcinoma—review of the molecular mechanisms of tumorigenesis. Head Neck 30: 946–963.

    Article  Google Scholar 

  • Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF et al. (2008). An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205: 2551–2560.

    Article  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA . (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4: 721–726.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    Article  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    Article  CAS  Google Scholar 

  • Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3: e2236.

    Article  Google Scholar 

  • Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al. (2007). MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9: 775–787.

    Article  CAS  Google Scholar 

  • Glaser R, Zhang HY, Yao KT, Zhu HC, Wang FX, Li GY et al. (1989). Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA 86: 9524–9528.

    Article  CAS  Google Scholar 

  • Gottwein E, Cullen BR . (2010). A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84: 5229–5237.

    Article  CAS  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ . (2007). MicroRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7: 819–822.

    Article  CAS  Google Scholar 

  • Hutvagner G, Simard MJ, Mello CC, Zamore PD . (2004). Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.

    Article  Google Scholar 

  • Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K . (2009). MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113: 396–402.

    Article  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  Google Scholar 

  • Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al. (2008). MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28: 2167–2174.

    Article  CAS  Google Scholar 

  • Joseph B, Orlian M, Furneaux H . (1998). p21(waf1) mRNA contains a conserved element in its 3′-untranslated region that is bound by the Elav-like mRNA-stabilizing proteins. J Biol Chem 273: 20511–20516.

    Article  CAS  Google Scholar 

  • Kong QL, Hu LJ, Cao JY, Huang YJ, Xu LH, Liang Y et al. (2010). Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 6: e1000940.

    Article  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.

    Article  CAS  Google Scholar 

  • Lehmann U, Hasemeier B, Romermann D, Muller M, Langer F, Kreipe H . (2007). Epigenetic inactivation of microRNA genes in mammary carcinoma]. Verh Dtsch Ges Pathol 91: 214–220.

    CAS  PubMed  Google Scholar 

  • Lei X, Zhou Y, He X, Chen F . (1999). [The expression of suppressor gene p16, p21 and p53 in nasopharyngeal carcinoma]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 13: 406–408.

    CAS  PubMed  Google Scholar 

  • Li G, Luna C, Qiu J, Epstein DL, Gonzalez P . (2009). Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130: 731–741.

    Article  CAS  Google Scholar 

  • Li HM, Zhuang ZH, Wang Q, Pang JC, Wang XH, Wong HL et al. (2004). Epstein-Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells. Oncogene 23: 4488–4494.

    Article  CAS  Google Scholar 

  • Li XS, Rishi AK, Shao ZM, Dawson MI, Jong L, Shroot B et al. (1996). Posttranscriptional regulation of p21WAF1/CIP1 expression in human breast carcinoma cells. Cancer Res 56: 5055–5062.

    CAS  Google Scholar 

  • Liao WT, Wang HM, Li MZ, Song LB, Zhang L, Mai HQ et al. (2005). Establishment of three-dimensional culture models related to different stages of nasopharyngeal carcinogenesis. Ai Zheng 24: 1317–1321.

    CAS  PubMed  Google Scholar 

  • Lin CS, Kuo HH, Chen JY, Yang CS, Wang WB . (2000). Epstein-barr virus nuclear antigen 2 retards cell growth, induces p21(WAF1) expression, and modulates p53 activity post-translationally. J Mol Biol 303: 7–23.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q et al. (2011). MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71: 225–233.

    Article  CAS  Google Scholar 

  • Lung RW, Tong JH, Sung YM, Leung PS, Ng DC, Chau SL et al. (2009). Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 11: 1174–1184.

    Article  CAS  Google Scholar 

  • Maes OC, Sarojini H, Wang E . (2009). Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221: 109–119.

    Article  CAS  Google Scholar 

  • Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M et al. (2010). MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2: 333–343.

    Article  CAS  Google Scholar 

  • McDermott AL, Dutt SN, Watkinson JC . (2001). The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci 26: 82–92.

    Article  CAS  Google Scholar 

  • Mei J, Bachoo R, Zhang CL . (2011). MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol 31: 3584–3592.

    Article  CAS  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y, Tuschl T . (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10: 544–550.

    Article  CAS  Google Scholar 

  • Ni CW, Qiu H, Jo H . (2011). MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol 300: H1762–H1769.

    Article  CAS  Google Scholar 

  • Orom UA, Kauppinen S, Lund AH . (2006). LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372: 137–141.

    Article  CAS  Google Scholar 

  • Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L et al. (2010). Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep 24: 105–112.

    CAS  PubMed  Google Scholar 

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A et al. (1995). p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.

    Article  CAS  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  Google Scholar 

  • Pizzimenti S, Ferracin M, Sabbioni S, Toaldo C, Pettazzoni P, Dianzani MU et al. (2009). MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med 46: 282–288.

    Article  CAS  Google Scholar 

  • Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ et al. (2008). MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105: 5874–5878.

    Article  CAS  Google Scholar 

  • Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E et al. (2010). Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer 126: 2036–2048.

    CAS  Google Scholar 

  • Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al. (2007). An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 104: 19983–19988.

    Article  CAS  Google Scholar 

  • Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ et al. (2009). The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 119: 3626–3636.

    Article  CAS  Google Scholar 

  • Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL . (2006). Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res 66: 6225–6232.

    Article  CAS  Google Scholar 

  • Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA et al. (2010). Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5: e10344.

    Article  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C et al. (2010a). Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31: 1561–1566.

    Article  CAS  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N et al. (2010b). Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80: 2057–2065.

    Article  CAS  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032–1046.

    Article  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515–524.

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  Google Scholar 

  • Wang M, Li JT, Zeng YX, Hou JH, Lin QQ . (2005). Expression and Significance of Notch1, P21WAF1 and involucrin in nasopharyngeal carcinoma]. Ai Zheng 24: 1230–1234.

    CAS  PubMed  Google Scholar 

  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R . (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40: 1478–1483.

    Article  CAS  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R . (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39: 380–385.

    Article  CAS  Google Scholar 

  • Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C et al. (2010). Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. Int J Oncol 37: 1315–1321.

    CAS  PubMed  Google Scholar 

  • Wei WI, Sham JS . (2005). Nasopharyngeal carcinoma. Lancet 365: 2041–2054.

    Article  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C et al. (2010). The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70: 3833–3842.

    Article  CAS  Google Scholar 

  • Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY et al. (2011). MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression. J Cancer Res Clin Oncol 137: 415–422.

    Article  CAS  Google Scholar 

  • Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T et al. (2010). Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29: 2302–2308.

    Article  CAS  Google Scholar 

  • Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW et al. (2010). miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun 391: 535–541.

    Article  CAS  Google Scholar 

  • Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J et al. (2009). Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 8: 889–895.

    Article  CAS  Google Scholar 

  • Xu S, Feng Z, Zhang M, Wu Y, Sang Y, Xu H et al. (2011). hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas. Oncogene 30: 2219–2229.

    Article  CAS  Google Scholar 

  • Yun JP, Miao J, Chen GG, Tian QH, Zhang CQ, Xiang J et al. (2007). Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters. Br J Cancer 96: 477–484.

    Article  CAS  Google Scholar 

  • Zeng YX, Jia WH . (2002). Familial nasopharyngeal carcinoma. Semin Cancer Biol 12: 443–450.

    Article  CAS  Google Scholar 

  • Zhang L, Deng T, Li X, Liu H, Zhou H, Ma J et al. (2010). microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 31: 559–566.

    Article  CAS  Google Scholar 

  • Zhang MF, Zhang ZY, Fu J, Yang YF, Yun JP . (2009). Correlation between expression of p53, p21/WAF1, and MDM2 proteins and their prognostic significance in primary hepatocellular carcinoma. J Transl Med 7: 110.

    Article  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3: 245–252.

    Article  CAS  Google Scholar 

  • Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y et al. (2008). Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer 123: 2065–2072.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jun Li for kindly providing the human gastric cancer cells MKN-45 and SCG-7901. This work was supported by grants from the National Natural Science Foundation of China (30973506 and 81172345), the 863 Project (2006AA02A404), the Science Foundation of Key Hospital Clinical Program of Ministry of Health, China (2010-178), and the Project of State Key Laboratory of Oncology in South China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-P Yun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Wang, Q., Wang, L. et al. MiR-663, a microRNA targeting p21WAF1/CIP1, promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 31, 4421–4433 (2012). https://doi.org/10.1038/onc.2011.629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.629

Keywords

This article is cited by

Search

Quick links