Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Akt2 interacts with Snail1 in the E-cadherin promoter

Abstract

Snail1 is a transcriptional factor essential for triggering epithelial-to-mesenchymal transition. Moreover, Snail1 promotes resistance to apoptosis, an effect associated to PTEN gene repression and Akt stimulation. In this article we demonstrate that Snail1 activates Akt at an additional level, as it directly binds to and activates this protein kinase. The interaction is observed in the nucleus and increases the intrinsic Akt activity. We determined that Akt2 is the isoform interacting with Snail1, an association that requires the pleckstrin homology domain in Akt2 and the C-terminal half in Snail1. Snail1 enhances the binding of Akt2 to the E-cadherin (CDH1) promoter and Akt2 interference prevents Snail1 repression of CDH1 gene. We also show that Snail1 binding increases Akt2 intrinsic activity on histone H3 and have identified Thr45 as a residue modified on this protein. Phosphorylation of Thr45 in histone H3 is sensitive to Snail1 and Akt2 cellular levels; moreover, Snail1 upregulates the binding of phosphoThr45 histone H3 to the CDH1 promoter. These results uncover an unexpected role of Akt2 in transcriptional control and point out to phosphorylation of Thr45 in histone H3 as a new epigenetic mark related to Snail1 and Akt2 action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmed NN, Franke TF, Bellacosa A, Datta K, Gonzalez-Portal ME, Taguchi T et al. (1993). The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene 8: 1957–1963.

    CAS  PubMed  Google Scholar 

  • Ahn JY, Liu X, Liu Z, Pereira L, Cheng D, Peng J et al. (2006). Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase. EMBO J 25: 2083–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). Mechanisms of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541–6551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andjelković M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M et al. (1997). Role of translocation in the activation and function of protein kinase B. J Biol Chem 272: 31515–31524.

    Article  PubMed  Google Scholar 

  • Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R et al. (2003). Overexpression of Akt2/protein kinase B beta leads to upregulation of beta1 integrins, increased invasion, and metastasis of human breast an ovarian cancer cell. Cancer Res 63: 196–206.

    CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Testa JR, Moore R, Larue L . (2004). A portrait of Akt kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 3: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    CAS  PubMed  Google Scholar 

  • Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings BA et al. (2007). Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5: e95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 78–83.

    Article  Google Scholar 

  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T . (2001). The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol Cell Biol 21: 8184–8188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT et al. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of Lysine 27 in histone H3. Science 310: 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH . (2007). Twist transcriptionally upregulates Akt2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67: 1979–1987.

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J . (2007). Snail is required for transforming growth factor-β-induced epithelial–mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Comm 353: 337–343.

    Article  CAS  PubMed  Google Scholar 

  • De Craene B, van Roy F, Berx G . (2005). Unraveling signalling cascades from the Snail family of transcription factors. Cell Signal 17: 535–547.

    Article  CAS  PubMed  Google Scholar 

  • Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ . (2009). Akt1 and Akt2 play distinct roles in the initiation and metastatic phases of tumor progression. Cancer Res 69: 5057–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez D, Montserrat-Sentís B, Virgós-Soler A, Guaita S, Grueso J, Porta M et al. (2003). Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 23: 5078–5089.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du K, Tsichlis PN . (2005). Regulation of Akt kinase by interacting proteins. Oncogene 24: 7401–7409.

    Article  CAS  PubMed  Google Scholar 

  • Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE et al. (2010). Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 107: 2598–2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escrivà M, Peiró S, Herranz N, Villagrasa P, Dave N, Montserrat-Sentís B et al. (2008). Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol 28: 1528–1540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Francí C, Takkunen M, Dave N, Alameda F, Gómez S, Rodríguez R et al. (2006). Expression of Snail protein in tumor–stroma interface. Oncogene 25: 5134–5144.

    Article  PubMed  Google Scholar 

  • Gao H, Yu Z, Bi D, Jiang L, Cui Y, Sun J et al. (2007). Akt/PKB interacts with the histone methyltransferase SETDB1 and coordinates to silence gene expression. Mol Cell Biochem 305: 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y . (2010). Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signalling and motility in prostate cancer cells. Oncogene 29: 4947–4958.

    Article  CAS  PubMed  Google Scholar 

  • García de Herreros A, Peiró S, Nassour M, Savagner P . (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J. Mammary Gland Biol Neoplasia 15: 135–147.

    Article  Google Scholar 

  • Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W et al. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63: 2172–2178.

    CAS  PubMed  Google Scholar 

  • He Z, Ma WY, Liu G, Zhang Y, Bode AM, Dong Z . (2003). Arsenite-induced phosphorylation of Histone 3 at Serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J Biol Chem 278: 10588–10593.

    Article  CAS  PubMed  Google Scholar 

  • Herranz N, Pasini D, Díaz VM, Francí C, Gutierrez A, Dave N et al. (2008). Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28: 3198–3207.

    Article  Google Scholar 

  • Hurd PJ, Bannister AJ, Halls K, Dawson MA, Vermeulen M, Olsen JV et al. (2009). Phosphorylation of histone H3 is linked to apoptosis. J Biol Chem 284: 16575–16583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K et al. (2009). Micro RNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 92: ra62.

    Google Scholar 

  • Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J Cell Biol 171: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn T, Seipel P, Urschel S, Peschel C, Duyster J. (2002). Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol 22: 979–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordà M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A et al. (2005). Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118: 3371–3385.

    Article  PubMed  Google Scholar 

  • Jordà M, Vinyals A, Marazuela A, Cubillo E, Olmeda D, Valero E et al. (2007). Id-1 is induced in MDCK epithelial cells by activated ERK/MAPK pathway in response to expression of the Snail and E47 transcription factors. Exp Cell Res 313: 2389–2403.

    Article  PubMed  Google Scholar 

  • Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. (2007). Activation of NF-κB by Akt upregulates Snail expression and induces epithelium–mesenchymal transition. Oncogene 26: 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Xuan Nguyen TL, Choi JW, Lee KH, Cho SW, Liu Z et al. (2008). Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage. Proc Natl Acad Sci USA 105: 16584–16589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y. (2001). Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 276: 32799–32805.

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo T, Ozawa M. (2003). The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117: 1675–1685.

    Article  Google Scholar 

  • Pálmer HG, Larriba MJ, García JM, Ordóñez-Morán P, Peña C, Peiró S et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10: 917–919.

    Article  PubMed  Google Scholar 

  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. (2005). Colorectal cancer: mutations in a signaling pathway. Nature 436: 792.

    Article  CAS  PubMed  Google Scholar 

  • Peiró S, Escrivà M, Puig I, Barberà MJ, Dave N, Herranz N et al. (2006). Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res 34: 2077–2084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pekarsky Y, Hallas C, Palamarchuk A, Koval A, Bullrich F, Hirata Y et al. (2000). Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 97: 3028–3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raurell I, Castaño J, Francí C, García de Herreros A, Duñach M . (2006). Presenilin-1 interacts with plakoglobin and enhances plakoglobin–Tcf-4 association: implications for the regulation of β-catenin/Tcf-4-dependent transcription. J Biol Chem 281: 1401–1411.

    Article  CAS  PubMed  Google Scholar 

  • Rychahou PG, Kang J, Gulhati P, Doan HQ, Chen LA, Xiao SY et al. (2008). Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105: 20315–20320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Fujita N, Tsuruo T . (2000). Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97: 10832–10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanas G, Porta-de-la-Riva M, Agustí C, Casagolda D, Sánchez-Aguilera F, Larriba MJ et al. (2008). E-cadherin controls β-catenin and NF-κB transcriptional activity in mesenchymal gene expression. J Cell Sci 121: 2224–2234.

    Article  CAS  PubMed  Google Scholar 

  • Stemmer V, de Crane B, Berx G, Behrens J . (2008). Snail promotes Wnt target gene expression and interacts with β-catenin. Oncogene 27: 5075–5080.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial–mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  • Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA . (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodgett JR . (2005). Recent advances in protein kinase B signaling pathway. Curr Opin Cell Biol 17: 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Neus Ontiveros for technical help; Dr David Casagolda for assistance with confocal microscopy; and Drs Lionel Larue and Alberto Muñoz for reagents. This study was supported by grants awarded by the Ministerio de Ciencia e Innovación (BFU2006-03203 and BFU2009-07578 to MD and SAF2006-00339 and SAF2010-16089 to AGH) and Fundació La Marató de TV3 (to AGH). The partial support from the Instituto Carlos III-Fondos FEDER (RTICCC, C03710, RD06/0020/0040) and the Generalitat de Catalunya (2009SGR867) is also appreciated. PV and RV-C were supported by predoctoral fellowships from the Ministerio de Ciencia y Tecnología and Instituto Carlos III, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Duñach or A García de Herreros.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villagrasa, P., Díaz, V., Viñas-Castells, R. et al. Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene 31, 4022–4033 (2012). https://doi.org/10.1038/onc.2011.562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.562

Keywords

This article is cited by

Search

Quick links