Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest

Abstract

The largest energy consumer in the cell is the ribosome biogenesis whose aberrancy elicits various diseases in humans. It has been recently revealed that p53 induction, along with cell cycle arrest, is related with abnormal ribosome biogenesis, but the exact mechanism still remains unknown. In this study, we have found that aberrant ribosome biogenesis activates two parallel cellular pathways, c-Myc and ASK1/p38, which result in p53 induction and G1 arrest. The c-Myc stabilizes p53 by rpL11-mediated HDM2 inhibition, and ASK1/p38 activates p53 by phosphorylation on serine 15 and 33. Our studies demonstrate the relationship between these two pathways and p53 induction. The changes caused by impaired ribosomal stress, such as p53 induction and G1 arrest, were completely disappeared by inhibition of either pathway. These findings suggest a monitoring mechanism of c-Myc and ASK1/p38 against abnormal ribosome biogenesis through controlling the stability and activity of p53 protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2: E139.

    Article  Google Scholar 

  • Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA et al. (2007). Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26: 759–772.

    Article  CAS  Google Scholar 

  • Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. (2008). Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456: 971–975.

    Article  CAS  Google Scholar 

  • Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J et al. (2009). Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 4: e7147.

    Article  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI . (2007). The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574–585.

    Article  CAS  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18: 6845–6854.

    Article  CAS  Google Scholar 

  • Cazzaniga G, Dell′Oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. (2005). Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 106: 1419–1422.

    Article  CAS  Google Scholar 

  • Cleveland JL, Sherr CJ . (2004). Antagonism of Myc functions by Arf. Cancer Cell 6: 309–311.

    Article  CAS  Google Scholar 

  • Dai MS, Lu H . (2008). Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105: 670–677.

    Article  CAS  Google Scholar 

  • Dai MS, Sears R, Lu H . (2007). Feedback regulation of c-Myc by ribosomal protein L11. Cell Cycle 6: 2735–2741.

    Article  CAS  Google Scholar 

  • Ellis SR, Lipton JM . (2008). Diamond Blackfan anemia: a disorder of red blood cell development. Curr Top Dev Biol 82: 217–241.

    Article  CAS  Google Scholar 

  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F . (2003). Ribosome assembly in eukaryotes. Gene 313: 17–42.

    Article  CAS  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. (2009). Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11: 501–508.

    Article  CAS  Google Scholar 

  • Gazda HT, Sheen MR, Vlachos A, Choesmel V, O′Donohue MF, Schneider H et al. (2008). Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83: 769–780.

    Article  CAS  Google Scholar 

  • Giono LE, Manfredi JJ . (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209: 13–20.

    Article  CAS  Google Scholar 

  • Granneman S, Baserga SJ . (2004). Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296: 43–50.

    Article  CAS  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S . (2005). p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25: 7423–7431.

    Article  CAS  Google Scholar 

  • Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH et al. (2007). Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 39: 35–43.

    Article  CAS  Google Scholar 

  • Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL et al. (1997). Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol 17: 3373–3381.

    Article  CAS  Google Scholar 

  • Kim HD, Kim TS, Joo YJ, Shin HS, Kim SH, Jang CY et al. (2010). RpS3 translation is repressed by interaction with its own mRNA. J Cell Biochem 110: 294–303.

    Article  CAS  Google Scholar 

  • Kim TS, Jang CY, Kim HD, Lee JY, Ahn BY, Kim J . (2006). Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Mol Biol Cell 17: 824–833.

    Article  CAS  Google Scholar 

  • Kim TS, Kim HD, Kim J . (2009). PKCdelta-dependent functional switch of rpS3 between translation and DNA repair. Biochim Biophys Acta 1793: 395–405.

    Article  CAS  Google Scholar 

  • Kishi H, Nakagawa K, Matsumoto M, Suga M, Ando M, Taya Y et al. (2001). Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J Biol Chem 276: 39115–39122.

    Article  CAS  Google Scholar 

  • Laskin JD, Heck DE, Laskin DL . (2002). The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol Sci 69: 289–291.

    Article  CAS  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  Google Scholar 

  • Liu JM, Ellis SR . (2006). Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107: 4583–4588.

    Article  CAS  Google Scholar 

  • Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al. (2010). An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18: 231–243.

    Article  CAS  Google Scholar 

  • Maggi Jr LB, Weber JD . (2005). Nucleolar adaptation in human cancer. Cancer Invest 23: 599–608.

    Article  CAS  Google Scholar 

  • Menne TF, Goyenechea B, Sanchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ et al. (2007). The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 39: 486–495.

    Article  CAS  Google Scholar 

  • Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M . (2008). Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32: 180–189.

    Article  CAS  Google Scholar 

  • Oliver ER, Saunders TL, Tarle SA, Glaser T . (2004). Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse minute. Development 131: 3907–3920.

    Article  CAS  Google Scholar 

  • Opferman JT, Zambetti GP . (2006). Translational research? ribosome integrity and a new p53 tumor suppressor checkpoint. Cell Death Differ 13: 898–901.

    Article  CAS  Google Scholar 

  • Pestov DG, Strezoska Z, Lau LF . (2001). Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 21: 4246–4255.

    Article  CAS  Google Scholar 

  • Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M . (2008). The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14: 1918–1929.

    Article  CAS  Google Scholar 

  • Ruggero D, Pandolfi PP . (2003). Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  Google Scholar 

  • Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S . (2005). Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev 19: 3070–3082.

    Article  CAS  Google Scholar 

  • Sumbayev VV, Yasinska IM . (2005). Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436: 406–412.

    Article  CAS  Google Scholar 

  • Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP . (2009). Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10: 1132–1139.

    Article  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB . (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.

    Article  CAS  Google Scholar 

  • Ullrich SJ, Anderson CW, Mercer WE, Appella E . (1992). The p53 tumor suppressor protein, a modulator of cell proliferation. J Biol Chem 267: 15259–15262.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lu H . (2009). Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369–377.

    Article  CAS  Google Scholar 

  • Zimmermann RA . (2003). The double life of ribosomal proteins. Cell 115: 130–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor E-J Choi (Korea University, Seoul, Korea) for the kind gifts of ASK1 antibody and GST-MKK6 protein. This work was supported in part by FPR08B1-230, 2008-0059301 and 2009-0086319 NRF Grants from Ministry of Education and Science of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kim, TS. & Kim, J. Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 30, 3317–3327 (2011). https://doi.org/10.1038/onc.2011.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.47

Keywords

This article is cited by

Search

Quick links