Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

OTX1 expression in breast cancer is regulated by p53

An Erratum to this article was published on 06 March 2014

A Corrigendum to this article was published on 07 July 2011

Abstract

The p53 transcription factor has a critical role in cell stress response and in tumor suppression. Wild-type p53 protein is a growth modulator and its inactivation is a critical event in malignant transformation. It has been recently demonstrated that wild-type p53 has developmental and differentiation functions. Indeed an over-expression of p53 in tumor cells induces asymmetrical division avoiding self-renewal of cancer stem cells (CSCs) and instead promoting their differentiation. In this study, 28 human breast carcinomas have been analyzed for expression of wild-type p53 and of a pool of non-clustered homeobox genes. We demonstrated that orthodenticle homolog 1 gene (OTX1) is transcribed in breast cancer. We established that the p53 protein directly induces OTX1 expression by acting on its promoter. OTX1 has been described as a critical molecule for axon refinement in the developing cerebral cortex of mice, and its activity in breast cancer suggests a synergistic function with p53 in CSC differentiation. Wild-type p53 may regulate cellular differentiation by an alternative pathway controlling OTX1 signaling only in breast cancer cells and not in physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Abate-Shen C . (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2: 777–785.

    CAS  Google Scholar 

  • Acampora D, Mazan S, Avantaggiato V, Barone P, Tuorto F, Lallemand Y et al. (1996). Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat genet 14: 218–222.

    Article  CAS  Google Scholar 

  • Argiropoulos B, Humphries RK . (2007). Hox genes in hematopoiesis and leukemogenesis. Oncogene 26: 6766–6776.

    Article  CAS  Google Scholar 

  • Blackburn AC, Jerry DJ . (2002). Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer? Breast Cancer Res 4: 101–111.

    Article  CAS  Google Scholar 

  • Borresen-Dale AL . (2003). TP53 and breast cancer. Hum Mut 21: 292–300.

    Article  CAS  Google Scholar 

  • Candi E, Terrinoni A, Rufini A, Chikh A, Lena AM, Suzuki Y et al. (2006). p63 is upstream of IKK alpha in epidermal development. J Cell Sci 119: 4617–4622.

    Article  CAS  Google Scholar 

  • Carbone D, Chiba I, Mitsudomi T . (1991). Polymorphism at codon 213 within the p53 gene. Oncogene 6: 1691–1692.

    CAS  Google Scholar 

  • Chen F, Capecchi MR . (1999). Paralogous mouse Hox genes, Hoxa9, Hoxb9 and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Dev Biol 96: 541–546.

    CAS  Google Scholar 

  • Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138: 1083–1095.

    Article  CAS  Google Scholar 

  • Cillo C, Faiella A, Cantile M, Boncinelli E . (1999). Homeobox genes and cancer. Exp Cell Res 248: 1–9.

    Article  CAS  Google Scholar 

  • Danilova N, Sakamoto KM, Lin S . (2008). p53 family in development. Mech Dev 125: 919–931.

    Article  CAS  Google Scholar 

  • Eizenberg O, Faber-Elman A, Gottlieb E, Oren M, Rotter V, Schwartz M . (1996). p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol 16: 5178–5185.

    Article  CAS  Google Scholar 

  • Ford HL . (1998). Homeobox genes: a link between development, cell cycle, and cancer? Cell Biol Int 22: 397–400.

    Article  CAS  Google Scholar 

  • Gonzales G . (2007). Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 8: 462–472.

    Article  Google Scholar 

  • Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H et al. (2005). TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. Embo J 24: 2458–2471.

    Article  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt M, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  Google Scholar 

  • Larsen KB, Lutterodt MC, Mollgard K, Moller M . (2010). Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain. J Histochem Cytochem 58: 669–678.

    Article  CAS  Google Scholar 

  • Levantini E, Giorgetti A, Cerisoli F, Traggiai E, Guidi A, Martin R et al. (2003). Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis. Proc Natl Acad Sci USA 100: 10299–10303.

    Article  CAS  Google Scholar 

  • Lewis MT . (2000). Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res 2: 158–169.

    Article  CAS  Google Scholar 

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7: 165–171.

    Article  CAS  Google Scholar 

  • Melino G, Lu X, Gasco M, Crook T, Knight RA . (2003). Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28: 663–670.

    Article  CAS  Google Scholar 

  • Morrison SJ, Kimble J . (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441: 1068–1074.

    Article  CAS  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC . (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13: 962–972.

    Article  CAS  Google Scholar 

  • Omodei D, Acampora D, Russo F, De Filippi R, Severino V, Di Francia R et al. (2009). Expression of the brain transcription factor OTX1 occurs in a subset of normal germinal-center B cells and in aggressive Non-Hodgkin Lymphoma. Am J Pathol 175: 2609–2617.

    Article  CAS  Google Scholar 

  • Papadakis EN, Dokianakis DN, Spandidos DA . (2000). p53 codon 72 polymorphism as a risk factor in the development of breast cancer. Mol Cell Biol Res Comm 3: 389–392.

    Article  CAS  Google Scholar 

  • Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103: 321–330.

    Article  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  Google Scholar 

  • Smalley M, Ashworth A . (2003). Stem cells and breast cancer: a field in transit. Nature 3: 832–844.

    CAS  Google Scholar 

  • Watabe T, Miyazono K . (2009). Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res 19: 103–115.

    Article  CAS  Google Scholar 

  • Whibley C, Pharoah PD, Hollstein M . (2009). p53 polymorphisms: cancer implications. Nat Rev Cancer 9: 95–107.

    Article  CAS  Google Scholar 

  • Zhang YA, Okada A, Hong Lew C, McConnell SK . (2002). Regulated nuclear trafficking of the homeodomain protein Otx1 in cortical neurons. Mol Cell Neurosci 19: 430–446.

    Article  CAS  Google Scholar 

  • Zucchi I, Astigiano S, Bertalot G, Sanzone S, Cocola C, Pelucchi P et al. (2008). Distinct populations of tumor-initiating cells derived from a tumor generated by rat mammary cancer stem cells. Proc Natl Acad Sci USA 105: 16940–16945.

    Article  CAS  Google Scholar 

  • Zucchi I, Sanzone S, Astigiano S, Pelucchi P, Scotti M, Valsecchi V et al. (2007). The properties of a mammary gland cancer stem cell. Proc Natl Acad Sci USA 104: 10476–10481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Centro Grandi Strumenti University of Insubria, Fondazione Comunitaria del Varesotto- ONLUS, Ministero dell’Istruzione, dell’Università e della Ricerca DM25591 and Banca del Monte di Lombardia, Pavia, Italy to GP. This work has also been supported by the Medical Research Council, UK; ‘Alleanza contro il Cancro’ (ACC12-ACC6), MIUR/PRIN (RBIP06LCA9_0023), AIRC (2008-2010_33-08), Italian Human ProteomeNet RBRN07BMCT_007 and Telethon (GGPO9133) to GM, Ministero della Salute RF06-RF07 to GM. GP thanks to AIL Varese.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Porta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrinoni, A., Pagani, I., Zucchi, I. et al. OTX1 expression in breast cancer is regulated by p53. Oncogene 30, 3096–3103 (2011). https://doi.org/10.1038/onc.2011.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.31

Keywords

This article is cited by

Search

Quick links