Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TP63 P2 promoter functional analysis identifies β-catenin as a key regulator of ΔNp63 expression

Abstract

The ΔNp63 protein, a product of the TP63 gene that lacks the N-terminal domain, has a critical role in the maintenance of self renewal and progenitor capacity in several types of epithelial tissues. ΔNp63 is frequently overexpressed in squamous cell carcinoma (SCC) and in some other epithelial tumours. This overexpression may contribute to tumour progression through dominant-negative effects on the transcriptionally active (TA) isoforms of the p53 family (TAp63, TAp73 and p53), as well as through independent mechanisms. However, the molecular basis of ΔNp63 overexpression is not fully understood. Here, we show that the expression of ΔNp63 is regulated by the Wnt/β-catenin pathway in human hepatocellular carcinoma (HCC) and SCC cell lines. This regulation operates in particular through TCF/LEF sites present in the P2 promoter of TP63. In addition, we show that ΔNp63 and β-catenin are frequently coexpressed and accumulated in oesophageal SCC, but not in HCC. These results suggest that activation of the β-catenin pathway may contribute to overexpression of ΔNp63 during tumour progression, in a cell type-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CBF:

CAAT-binding factor

HCC:

hepatocellular carcinoma

PBS:

Pitx2-binding site

RE:

responsive element

SCC:

squamous cell carcinoma

TA:

transcriptionally active

TBE:

TCF/LEF-binding element; UTR, untranslated region

References

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137: 87–98.

    Article  CAS  Google Scholar 

  • Ai D, Wang J, Amen M, Lu MF, Amendt BA, Martin JF . (2007). Nuclear factor 1 and T-cell factor/LEF recognition elements regulate Pitx2 transcription in pituitary development. Mol Cell Biol 27: 5765–5775.

    Article  CAS  Google Scholar 

  • Ambler CA, Maatta A . (2009). Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217: 206–216.

    Article  CAS  Google Scholar 

  • Auriol E, Billard LM, Magdinier F, Dante R . (2005). Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus. Nucleic Acids Res 33: 4243–4254.

    Article  CAS  Google Scholar 

  • Barbieri CE, Tang LJ, Brown KA, Pietenpol JA . (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66: 7589–7597.

    Article  CAS  Google Scholar 

  • Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8: 551–561.

    Article  CAS  Google Scholar 

  • Cavard C, Colnot S, Audard V, Benhamouche S, Finzi L, Torre C et al. (2008). Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol 4: 647–660.

    Article  CAS  Google Scholar 

  • Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B et al. (2006). Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with beta-catenin mutations. Oncogene 25: 599–608.

    Article  CAS  Google Scholar 

  • Chu WK, Dai PM, Li HL, Chen JK . (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. J Biol Chem 283: 7328–7337.

    Article  CAS  Google Scholar 

  • Chu WK, Lee KC, Chow SE, Chen JK . (2006). Dual regulation of the DeltaNp63 transcriptional activity by DeltaNp63 in human nasopharyngeal carcinoma cell. Biochem Biophys Res Commun 342: 1356–1360.

    Article  CAS  Google Scholar 

  • Drewelus I, Gopfert C, Hippel C, Dickmanns A, Damianitsch K, Pieler T et al. (2010). p63 antagonizes Wnt-induced transcription. Cell Cycle 9: 580–587.

    Article  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  Google Scholar 

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564.

    Article  CAS  Google Scholar 

  • Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC et al. (2003). Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 22: 7607–7616.

    Article  CAS  Google Scholar 

  • Hatzis P, van der Flier LG, van Driel MA, Guryev V, Nielsen F, Denissov S et al. (2008). Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 28: 2732–2744.

    Article  CAS  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  Google Scholar 

  • Katoh M, Katoh M . (2007). WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13: 4042–4045.

    Article  CAS  Google Scholar 

  • Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T et al. (2002). Identification of a Wnt/Dvl/beta-Catenin —> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111: 673–685.

    Article  CAS  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van WD, de WR, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  Google Scholar 

  • Kudo J, Nishiwaki T, Haruki N, Ishiguro H, Shibata Y, Terashita Y et al. (2007). Aberrant nuclear localization of beta-catenin without genetic alterations in beta-catenin or Axin genes in esophageal cancer. World J Surg Oncol 5: 21.

    Article  Google Scholar 

  • Lanza M, Marinari B, Papoutsaki M, Giustizieri ML, D'Alessandra Y, Chimenti S et al. (2006). Cross-talks in the p53 family: deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-of-function mutants. Cell Cycle 5: 1996–2004.

    Article  CAS  Google Scholar 

  • Laurent-Puig P, Zucman-Rossi J . (2006). Genetics of hepatocellular tumors. Oncogene 25: 3778–3786.

    Article  CAS  Google Scholar 

  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22: 1184–1193.

    Article  CAS  Google Scholar 

  • Marcel V, Hainaut P . (2009). p53 isoforms—a conspiracy to kidnap p53 tumor suppressor activity? Cell Mol Life Sci 66: 391–406.

    Article  CAS  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Ninomiya I, Endo Y, Fushida S, Sasagawa T, Miyashita T, Fujimura T et al. (2000). Alteration of beta-catenin expression in esophageal squamous-cell carcinoma. Int J Cancer 85: 757–761.

    Article  CAS  Google Scholar 

  • Novak A, Dedhar S . (1999). Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56: 523–537.

    Article  CAS  Google Scholar 

  • Patturajan M, Nomoto S, Sommer M, Fomenkov A, Hibi K, Zangen R et al. (2002). DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell 1: 369–379.

    Article  CAS  Google Scholar 

  • Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140: 62–73.

    Article  CAS  Google Scholar 

  • Petitjean A, Cavard C, Shi H, Tribollet V, Hainaut P, Caron de FC . (2005). The expression of TA and DeltaNp63 are regulated by different mechanisms in liver cells. Oncogene 24: 512–519.

    Article  CAS  Google Scholar 

  • Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C et al. (2008). Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. Carcinogenesis 29: 273–281.

    Article  CAS  Google Scholar 

  • Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.

    Article  CAS  Google Scholar 

  • Romano RA, Birkaya B, Sinha S . (2006). Defining the regulatory elements in the proximal promoter of DeltaNp63 in keratinocytes: potential roles for Sp1/Sp3, NF-Y, and p63. J Invest Dermatol 126: 1469–1479.

    Article  CAS  Google Scholar 

  • Senoo M, Matsumura Y, Habu S . (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene 21: 2455–2465.

    Article  CAS  Google Scholar 

  • Senoo M, Pinto F, Crum CP, McKeon F . (2007). p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129: 523–536.

    Article  CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  Google Scholar 

  • Taniere P, Martel-Planche G, Saurin JC, Lombard-Bohas C, Berger F, Scoazec JY et al. (2001). TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a low incidence area in Western Europe. Br J Cancer 85: 721–726.

    Article  CAS  Google Scholar 

  • Waltermann A, Kartasheva NN, Dobbelstein M . (2003). Differential regulation of p63 and p73 expression. Oncogene 22: 5686–5693.

    Article  CAS  Google Scholar 

  • Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M et al. (2005). DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65: 758–766.

    CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  Google Scholar 

  • Yang A, McKeon F . (2000). P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 1: 199–207.

    Article  CAS  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.

    Article  CAS  Google Scholar 

  • Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol Cell 24: 593–602.

    Article  CAS  Google Scholar 

  • Zucchi I, Astigiano S, Bertalot G, Sanzone S, Cocola C, Pelucchi P et al. (2008). Distinct populations of tumor-initiating cells derived from a tumor generated by rat mammary cancer stem cells. Proc Natl Acad Sci USA 105: 16940–16945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs W Dinjens (University Medical Center, Rotterdam, The Netherlands) and A Costanzo (University of Rome, Italy) for the generous gift of TE-10 cells and pGL3-P2 plasmid, respectively; Drs J Zucmann-Rossi (INSERM U674, Paris, France) and B Terris (Institut Cochin, Paris, France) for the analysis of ΔNp63 expression in HCC samples; Dr B Abedi for her help for IHC experiments; Dr G Martel-Planche and A Masquelet and Ms A Durand and A Charnay for technical assistance; Drs S Sentis, G Hinkal and S and D Cox for critical reading of the manuscript. This project was supported by INSERM and the Association pour la Recherche contre le Cancer (grant number 3117). CR and HS were funded by the French Ligue Nationale Contre le Cancer, AP by the French Ministère de l’Enseignement et de la Recherche, and ET, PT, and VT by the International Agency for Research on Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Caron de Fromentel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruptier, C., De Gaspéris, A., Ansieau, S. et al. TP63 P2 promoter functional analysis identifies β-catenin as a key regulator of ΔNp63 expression. Oncogene 30, 4656–4665 (2011). https://doi.org/10.1038/onc.2011.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.171

Keywords

This article is cited by

Search

Quick links