Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAX5–PML acts as a dual dominant-negative form of both PAX5 and PML

Abstract

PAX5 is a transcription factor required for B-cell development and maintenance. PML is a tumor suppressor and a pro-apoptotic factor. A fusion gene, PAX5–PML, was found in acute lymphoblastic leukemia (ALL) with chromosomal translocation t(9;15)(p13;q24), but no functional analysis has been reported. Here, we demonstrate that PAX5–PML had a dominant-negative effect on both PAX5 and PML. PAX5–PML dominant negatively inhibited PAX5 transcriptional activity in the luciferase reporter assay and suppressed the expression of the PAX5 transcriptional targets in B-lymphoid cell line. Surprisingly, PAX5–PML hardly showed DNA-binding activity in vitro although it retained the DNA-binding domain of PAX5. Additional experiments, including chromatin immunoprecipitation (ChIP) assay, suggested that PAX5–PML bound to the promoter through the association with PAX5 on the promoter. On the other hand, coexpression of PAX5–PML inhibited PML sumoylation, disrupted PML nuclear bodies (NBs), and conferred apoptosis resistance on HeLa cells. Furthermore, treatment with arsenic trioxide (ATO) induced PML sumoylation and reconstitution of PML NBs, and overcame the anti-apoptotic effect of PAX5–PML in HeLa cells. These data suggest the possible involvement of this fusion protein in the leukemogenesis of B-ALL in a dual dominant-negative manner and the possibility that ALL with PAX5–PML can be treated with ATO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Atsumi A, Tomita A, Kiyoi H, Naoe T . (2006). Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML-RARalpha as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochem Biophys Res Commun 345: 1471–1480.

    Article  CAS  PubMed  Google Scholar 

  • Busslinger M . (2004). Transcriptional control of early B cell development. Annu Rev Immunol 22: 55–79.

    Article  CAS  PubMed  Google Scholar 

  • Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z . (1996). Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 93: 6129–6134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89: 3345–3353.

    CAS  PubMed  Google Scholar 

  • Czerny T, Schaffner G, Busslinger M . (1993). DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev 7: 2048–2061.

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  PubMed  Google Scholar 

  • Dyck JA, Maul GG, Miller Jr WH, Chen JD, Kakizuka A, Evans RM . (1994). A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene MC, Beldjord K, De Vos J et al. (2009). PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 23: 1989–1998.

    Article  CAS  PubMed  Google Scholar 

  • Fazio G, Palmi C, Rolink A, Biondi A, Cazzaniga G . (2008). PAX5/TEL acts as a transcriptional repressor causing down-modulation of CD19, enhances migration to CXCL12, and confers survival advantage in pre-BI cells. Cancer Res 68: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa F, Abe A, Kitabayashi I, Pandolfi PP, Naoe T . (2008). Acetylation of PML is involved in histone deacetylase inhibitor-mediated apoptosis. J Biol Chem 283: 24420–24425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa F, Privalsky ML . (2004). Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5: 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H . (2004). Functional regulation of GATA-2 by acetylation. J Leukoc Biol 75: 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Holmes ML, Carotta S, Corcoran LM, Nutt SL . (2006). Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev 20: 933–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. (1996). The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88: 4110–4117.

    CAS  PubMed  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T et al. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147: 221–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S et al. (2010). PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18: 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata N, Ogawa S, Zimmermann M, Niebuhr B, Stocking C, Sanada M et al. (2008). Cloning of genes involved in chromosomal translocations by high-resolution single nucleotide polymorphism genomic microarray. Proc Natl Acad Sci USA 105: 11921–11926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Shinagawa T et al. (2001). Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell 7: 1233–1243.

    Article  CAS  PubMed  Google Scholar 

  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al. (1994). The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. Embo J 13: 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M . (1992). The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol 12: 2662–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier H, Ostraat R, Parenti S, Fitzsimmons D, Abraham LJ, Garvie CW et al. (2003). Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-alpha gene transcription by Pax-5 (BSAP). Nucleic Acids Res 31: 5483–5489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkola I, Heavey B, Horcher M, Busslinger M . (2002). Reversion of B cell commitment upon loss of Pax5 expression. Science 297: 110–113.

    Article  CAS  PubMed  Google Scholar 

  • Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S . (2002). Mechanisms of action of arsenic trioxide. Cancer Res 62: 3893–3903.

    CAS  PubMed  Google Scholar 

  • Morrison AM, Nutt SL, Thevenin C, Rolink A, Busslinger M . (1998). Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Semin Immunol 10: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Matunis MJ, Dejean A . (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. Embo J 17: 61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA et al. (2009). Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23: 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Nebral K, Konig M, Harder L, Siebert R, Haas OA, Strehl S . (2007). Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol 139: 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Yan H, Yu T, Sun HP, Liu JX, Li XS et al. (1999). Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 94: 3315–3324.

    CAS  PubMed  Google Scholar 

  • Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M . (2001). Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol 20: 65–82.

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Morrison AM, Dorfler P, Rolink A, Busslinger M . (1998). Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 17: 2319–2333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivella S, May C, Chadburn A, Riviere I, Sadelain M . (2003). A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 101: 2932–2939.

    Article  CAS  PubMed  Google Scholar 

  • Schebesta M, Pfeffer PL, Busslinger M . (2002). Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17: 473–485.

    Article  CAS  PubMed  Google Scholar 

  • Souabni A, Cobaleda C, Schebesta M, Busslinger M . (2002). Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17: 781–793.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. (1998a). Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547–1551.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R et al. (1998b). PML is essential for multiple apoptotic pathways. Nat Genet 20: 266–272.

    Article  CAS  PubMed  Google Scholar 

  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M et al. (1994). Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76: 345–356.

    Article  CAS  PubMed  Google Scholar 

  • Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S et al. (2001). The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 21: 2259–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Kuo C, Bisi JE, Kim MK . (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4: 865–870.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB et al. (2010). Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328: 240–243.

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP . (2000a). Role of SUMO-1-modified PML in nuclear body formation. Blood 95: 2748–2752.

    CAS  PubMed  Google Scholar 

  • Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP . (2000b). Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 191: 631–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY et al. (1997). Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94: 3978–3983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Martin L Privalsky (University of California at Davis, CA, USA), Dr Masayuki Yamamoto (Tohoku University) and Dr Stefano Rivella (Memorial Sloan-Kettering Cancer Center) for kindly providing vectors. We are very grateful to Ryouhei Tanizaki, Yuka Nomura and Chika Wakamatsu for their technical assistance. This work was supported by Grants-in-Aid from the National Institute of Biomedical Innovation and the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Hayakawa.

Ethics declarations

Competing interests

Dr Naoe received research funding from Kyowa Hakko Kirin Co., Ltd, Wyeth, and Chugai Pharmaceutical Co., Ltd. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurahashi, S., Hayakawa, F., Miyata, Y. et al. PAX5–PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene 30, 1822–1830 (2011). https://doi.org/10.1038/onc.2010.554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.554

Keywords

This article is cited by

Search

Quick links